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Named Entity Disambiguation (NED)

* Goal: map entity mentions in text to their corresponding
entities in a reference Knowledge Base (e.g. Wikipedia).

Can Lebron James be as
famous as i
the history of NBA?

Professor
UC Berkeley will visit our

department on next Friday.

* NED is critical for many text analysis/understanding tasks.
* information network construction
* tweets tagging
e advertisements placement

]
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NED - Existing solutions

* Heavily rely on the cross-document hyperlinks in KB.

Incoming hyperlinks Incoming hyperlinks

Machine Learning

Michael I. Jordan

Machine Learning

Michael I. Jordan
) - _-~"researcher ~~_ . .
Michael Jordan — AEEE. Jord_an 'S { Michael Jordan—— Michael |.Jord.an ®
\ a computer science \\§tatistica| learning/ . acomputer science
professor at UCB ... -

Scee - professor at UCB ...
_ay xr —— /¥ _

Michael I. Jordan

//’/evséa,-cﬁé.?‘\// Michael |. Jordan is
Andrew Ngis a ( Michael Jordan /") a computer science
computer scientist *~_invented model. -/ professor at UCB ...
/ and founder of ... o - [researcher] [model]

[statistical learning] ...

U\\_/\

Andrew Ng

\\2

Statistician

Andrew Ng Statistician

Michael Jordan

Andrew Ng — |

v _— ¥_—

(a) Semantic Relatedness

(b) Description Expansion

4/27/16 WWW’2016



Motivation

* However...
@ Most closed domain KBs contain very few such links
* Biomedicine
* Enterprise
@ Manually adding such links into KB is very expensive

 So...

s it possible to perform high-
quality NED without using any

cross-doc hyperlinks?
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Objectives

 NED with Linkless KBs (LNED)

Entity 1

Unstructured text
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Entity 2

4/27/16 WWW’2016 5



The Evidence Mining Approach

* Goal: bridge the information gap caused by missing links.
* |nput:
 mention mand linkless reference KB K

* m’s candidate documents and mention documents
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i context  Machine Learning ? ;‘cand!g\ajs% Michael Jordan| description !
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(Michael Jordan |
e L
Mention Doc Set Candidate Doc Set

Knowledge Base K

* QOutput:
A word distribution for each entity candidate (i.e., disambiguation

evidences), with representative words higher probabilities
|
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Disambiguation Evidences

 Mined evidences can expand the description of an
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LNED via Evidence Mining

Algorithm 1 LNED via Evidence Mining

Input: Reference knowledge base K (with no links),
named entity mention m, query q.

Generate candidates list C for mention m

Fetch candidate documents set D¢ from K

Fetch m’s mention documents set Dys from K

Mine evidences from D¢ U Dy

Use mined evidences to rank candidate ¢ € C' for m in ¢
Return top-ranked candidate ctop as the genuine entity
for m in q
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Evidence Mining Model
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* A Generative Model
e Givenata rget mention, Dc (candidate doc set), Dwm (mention doc set)

 model each of its entity candidates as a topic/label
* introduce somespecial topics/labels to capture noisy/useless
words

 Generatethewordsin Dc & Dm based on such topics
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Evidence Mining Model

* Three special types of topics/labels:
e Background

e Undefined
 Master
Candidate 1 Candidate 1 Candidate 1
P Master Entity < Master Entity P Master Entity
x —wovd’ Candidate 2 x _—word) Candidate 2 J L WO Candidate 2
Mention Doc vee Mention Doc vee Mention Doc
Candidate n Candidate n Candidate n
(a) Background (b) Undefined (c) Master

* For a mention with K referent entity candidates, the total
number of topics/labels is K+2+| master entity set | or
K+2+| mention document set|
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Evidence Mining Model
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z24;is either the For words surrounding mention (width-W window):
corresponding z4; is either drawn from the referent entity candidates’

candidatelabel, labels plus “undefined”, or “background”, or “master”
or “background” For other words: zy; is “master”
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Model Inference

e Approximate Inference via Gibbs Sampling:
e Blocked Gibbs Sampling

« Sample {z, t,} together given all other variables

e Estimating Document-Label Association:

9(0) _ |u,? & d tw = l:zw — Cl +
¢ |w€dtw:1|+|C|Q—|—Ozud

« Estimating Label-Word Association:

(v) _ |w:v’tw:1’Zw:C|+ﬁ
c o |tw:1,zw:C|+V'lB
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Ranking Referent Candidates

« Utilize the knowledge learned from the evidence mining
model to rank referent entity candidates, and choose the
top-ranked candidate as disambiguation result.

* Via Incremental Gibbs Sampling:
* only samplethe wordsin the query document

e converge very fast

* Predict with Maximal Marginal Probability
LNED(d) = a'rgmaa:COC(f)
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LNED via Evidence Mining

offline online
Query
Candidate
Documents
E'\\rni.dgnce 5 Mined C;ndislates
ihing Evidences anking
Mention v
Documents LNED
Result
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Experiments Setup

* Datasets
# of Queries 424 340
Avg Length of Queries (words) 53.15 16.46
Avg # of Candidates ~24 ~19

« Reference Knowledge Base
* Wikipedia (with all hyperlinks removed)

* Parameter Setting
* tuned on a small test dataset
 a=0.01,a4=0.1,=0.01,B4=0.1,B,,=0.1, B,,s=0.01
* Y1 =O'011V2 = 11 V3= 2

]
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Experiments Setup

 Compared methods:

 Labeled-LDA: a model which learns label-word association from
labeled documents and infers labels for unlabeled documents. 1!

 MENED: a model designed to mine additional evidences from
external corpus to help NED. [?]

» Wikifier:a widely-used NED system using a machine learning
based hybrid strategy to combine various kinds of features. (3!

e AIDA: a robust NED system making use of weighted mention-
entity graph to find the best joint mention-entity mapping. [#!

e LENS: our method, we name it as Linking Evidences in Not well
linked Sources (LENS).
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Effectiveness of Evidence Mining
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End-to-end NED Accuracy
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Conclusions

 Named Entity Disambiguation with Linkless Knowledge

Bases (LNED)
 LNED s a critical and challenging task, especially in domains of

biomedicine, enterprise, etc.
e QOur evidence mining approach provides an effective way to

tackle the LNED problem.

e Future work
* |nvestigating possibility to test in closed domains

* Automatically generating entity candidates without relying on

any mention-entity mapping dictionaries.
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