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ABSTRACT

Entity Extraction is a process of identifying meaningful en-
tities from text documents. In enterprises, extracting enti-
ties improves enterprise efficiency by facilitating numerous
applications, including search, recommendation, etc. How-
ever, the problem is particularly challenging on enterprise
domains due to several reasons. First, the lack of redun-
dancy of enterprise entities makes previous web-based sys-
tems like NELL and OpenlE not effective, since using only
high-precision/low-recall patterns like those systems would
miss the majority of sparse enterprise entities, while using
more low-precision patterns in sparse setting also introduces
noise drastically. Second, semantic drift is common in enter-
prises (“Blue” refers to “Windows Blue”), such that public
signals from the web cannot be directly applied on entities.
Moreover, many internal entities never appear on the web.
Sparse internal signals are the only source for discovering
them. To address these challenges, we propose an end-to-
end framework for extracting entities in enterprises, taking
the input of enterprise corpus and limited seeds to generate
a high-quality entity collection as output. We introduce the
novel concept of Semantic Pattern Graph to leverage pub-
lic signals to understand the underlying semantics of lexical
patterns, reinforce pattern evaluation using mined seman-
tics, and yield more accurate and complete entities. Experi-
ments on Microsoft enterprise data show the effectiveness of
our approach.

1. INTRODUCTION AND MOTIVATION

Access to an organized information network or knowledge
base is critical for many real-world applications. Most real-
world information is unstructured, interconnected, noisy,
and often expressed in the form of text. This inspires con-
structing an organized, semi-structured knowledge base from
the large volume of noisy text data. Such formal and struc-
tural representation of information has the advantage of be-
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Figure 1: Two examples showing how sparsity makes entity
extraction challenging in enterprises.)

ing easy to manage and reason with, which can greatly facili-
tate many artificial intelligence applications, such as seman-
tic search, reasoning and question answering. To achieve
this goal, knowledge bases such as DBpedia [2] and Free-
base [3] were manually constructed. However, due to the
laborious, time consuming, and costly extracting and label-
ing process, these knowledge bases are often restricted by a
very limited coverage. Recently, automatically constructed
knowledge bases including YAGO [22], NELL [5] and Reverb
[12] have emerged. However, it is still challenging to make
such systems with both satisfactory coverage and quality.
How to automatically construct a high-quality knowledge
base from large amount of unstructured and noisy text data
remains an open research problem.

Most previous studies on automatic knowledge base con-
struction focus on open domain. Namely, they extract infor-
mation from web-scale corpus and try to cover as many enti-
ties as possible. Despite the fact that these open domain ef-
forts cover millions of entities, most lesser known or domain
specific entities are not captured by them. Therefore, in
closed domains (e.g., enterprises, governments, etc.), in or-
der to better facilitate the knowledge-inspired applications,
we have to build domain-specific knowledge bases. In this
work, we focus on one particularly important domain, enter-
prises, and study the Enterprise Entity Extraction problem.
Our goal is to harvest a comprehensive entity set from the
enterprise corpus. The set should cover important entities
within enterprises (e.g., products, teams, techniques, etc.)
and provide categorical information for these entities. This
can be seen as the first step towards building a complete
enterprise knowledge base, which should eventually contain
attributes, relations and brief summaries of these entities.



The FEnterprise Entity Extraction task is very related to
the Web Information Extraction [9, 5, 14, 21] problem, which
aims to extract interesting entities (and potentially the re-
lations among them) from Web corpus. Unfortunately, the
techniques proposed for Web entity extraction can hardly be
applied to enterprises. This is because enterprise corpora ex-
hibit very different characteristics compared with the Web
corpus, which leads to the following unique challenges for
extracting entities in enterprises.

1. Data Sparsity: Enterprise entities exhibit much less
redundancy than public entities in the Web. There-
fore, the extracting techniques based on frequencies or
statistics can hardly be utilized in enterprises.

2. Semantic Drift: Many entities in enterprises have
special meanings different from the popular meanings
in external world. For example, within Microsoft, “Blue”
could mean “Microsoft Blue” instead of the color. Even
for the same entities, the internal usage could be very
different from the external usage. For example, for the
entity “Windows”, external usage mainly focuses how
to install and use it, while internal usage cares more
about implementation and design. Therefore, it is in-
appropriate to directly explore distributional seman-
tics [17] for iteratively extracting enterprise entities.

3. Low Public Coverage: Most internal entities are
not covered by public knowledge bases. Some are even
not covered by the Web. Therefore, it is very hard to
leverage public resources (e.g., Wikipedia, Google) to
provide complementary information. For instance, the
entity “Cloud ML” can only be found in Microsoft.

Data sparsity suggests to consider public data to allevi-
ate deficient redundancy. However, due to Challenges 2 &
3, incorporating public signals on entities directly introduces
much noise via Semantic Drift and also, not feasible for inter-
nal entities because of Low Public Coverage. Thus, instead
of harvesting entity signals from public data, pattern-level
approach is considered to tackle these challenges.

Most previous studies [9, 5, 14, 21] utilize general high
precision/low recall patterns (e.g. Hearst Patterns) to ex-
tract entities. Namely, they extract lexical patterns, op-
tionally with some fixed form (Hearst Patterns), from the
contexts of seed entities, evaluate the patterns’ precision,
and promote only a few top ones for further entity extrac-
tion. While this is a good fit for the redundant Web corpus,
it causes severe coverage issues in enterprise entity extrac-
tion since the enterprise corpus is very sparse. Based on our
experiment on Microsoft corpus, under-utilizing these accu-
rate patterns leads to less than 50% of enterprise entities
being successfully extracted. That is to say, most entities
in enterprise documents have contextual patterns with de-
ficient mentions to be justified. But these patterns have
highly relevant semantics to target entities, which we define
as Sparse Patterns. Therefore, to better cover the remain-
ing entities, some additional patterns (likely sparse) need to
be incorporated.

Harvesting good patterns is very challenging, since the
data sparsity issue makes it difficult to judge the quality of
the patterns. As a result, the following two types of errors
will emerge:

1. Adding Bad Patterns: Some bad patterns (e.g.,
very general patterns) may be wrongly judged as good

Enterprise Using Web data to recover Semantic Relationships T Entiti
Corpus (Semi-supervised method to generate patterns) : 1arget Entities
AN
2
Enterprise
Doc 1 X developer g
3

integrate X

B
debug X
Enterprise X backend v

Doc 2
Figure 2: A toy example showing how we integrate enter-
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ones. For example, as shown in Figure 1, pattern “ex-
isting X” is general enough for all kinds of entities,
but it is mistakenly evaluated as a good pattern to
distinguish “projects”, due to the fact that “existing
X” appears with all three positive seeds. Therefore,
noun “room” would be implied as a “project” by the
line “...existing rooms are scheduled...”. Patterns like
“existing X” are general enough to appear with any
nouns. Using limited enterprise documents, we may
not have enough signal to filter them out.

2. Missing Good Patterns: Some good patterns (es-
pecially sparse patterns) may be erroneously identified
as bad. For instance, as shown in Figure 1, we already
observe that “X developer” is a solid pattern since
it appears with all the positive seeds. However, lexi-
cal pattern “debug X” was skipped by the extractor,
since it never appears with seed entities. Therefore,
the good pattern “debug X is totally lost without
any evidence to prove its efficacy. With enough back-
ground knowledge, any human expert can conclude
that “debug X” has similar semantic to “X devel-
oper”. Moreover, an asymmetric relation holds here
that “X developer” is more general than “debug X”.
With high probability, an entity “X” that can be used
as “debug X” can also be used as “X developer”; the
other direction doesn’t hold. This asymmetric relation
implies that if “X developer” is a strong pattern to
extract “projects”, any noun “X” mentioned as “debug
X" in the corpus should also be extracted as “projects”
because the asymmetric relation makes the “X” possi-
ble to be used as “X developer”. However, using only
enterprise corpus cannot discover the semantic relation
between these two patterns, which leads to poor per-
formance of previous entity extractors.

To address these two problems, we developed a semi-
supervised pattern extraction method and leverage Web data
to understand the pattern semantics. As illustrated in Fig-
ure 2, semi-supervised pattern extraction can help extract
more lexical patterns from enterprise text, while Web text
can be used to build semantic relations between extracted
patterns, which can be further utilized to induce sparse yet
effective patterns. The built Semantic Graph helps to iden-
tify bad general patterns and good sparse patterns men-



tioned above, thus fixing the sparsity issue.

In this paper, we tackle the enterprise entity extraction
problem via bootstrapping. We take a few seed entities plus
an unlabeled enterprise corpus as input and produce a high-
quality entity set as output. With insufficient knowledge of
lexical patterns in enterprise corpus, we leverage public sig-
nals (i.e., Web text) to understand the underlying semantic
relations among sparse lexical patterns. For this purpose,
we propose a novel concept called Semantic Pattern Graph
(SPG), which is a hierarchical graph structure describing
the relations between lexical patterns. To the best of our
knowledge, this is the first work that models semantic rela-
tions between lexical patterns for entity extraction.

Our contribution can be summarized as follows: (1) We
develop an end-to-end framework for extracting entity in
enterprises. (2) We propose the novel concept of Semantic
Pattern Graph to utilize semantic relations between pat-
terns for entity extraction. (3) We conduct comprehensive
experiments on Microsoft enterprise corpus to justify the
effectiveness of our system.

2. RELATED WORK

Recently, several open information extraction systems have
been created. Most of them focus on entity and relation ex-
traction on web-scale data. Knowitall [9, 10, 8] combined
pattern-based and list-based extraction to achieve recall im-
provement. They used a set of generic, domain indepen-
dent extraction patterns (mostly Hearst patterns [16]) to
extend a set of seed concepts. NELL [5] is another open
information extractor for harvesting entities and relations
from the web. It used Coupled Pattern Learner [6], which
extracts lexical patterns with part-of-speech (POS) restric-
tions from positively labeled data, to identify new entities. A
restrict filtering constraint is applied to guarantee only high-
precision/low-recall patterns are promoted. SPIED [14] used
a similar way of pattern generation but scored patterns us-
ing both labeled and unlabeled entities. These three sys-
tems were designed to work with redundant entity mentions
(e.g., web data) and performed poorly on sparse enterprise
settings. In our tests of these pattern generators, we ob-
serve that high-precision/low-recall patterns they used can
hardly cover 50% of our target entity set. We provide la-
beled data for SPIED and both precision and recall are quite
unsatisfactory. Other open information extraction systems
like ReVerb [12, 11] and OLLIE [21] used verbal patterns
or some extraction templates, which may fail to work well
in sparse environment. Moreover, Poon and Domingos [18]
showed that open information extraction systems extracted
low accuracy relational triples on a small corpus. Hence,
two things are required in enterprise entity extraction: 1).
More low-precision patterns need to be leveraged to cover
more entities. 2). Open signals from the web need to be
incorporated to improve accuracy of those sparse patterns.

Our approach employs a semi-supervised bootstrap learn-
ing method, which begins with a small labeled set of tar-
get entities, trains a learning/ranking model, and uses that
model to label more data and so on. Yarowsky [27] ap-
plied bootstrapped learning on word sense disambiguation.
Later Riloff [19] used a set of seed entities to learn rules
for entity extraction from unlabeled data and extended it to
multi-class learning in [24]. Similar methods are also used
in many set-expansion works. SEAL [25, 26] is a web-based
set expansion system that uses wrappers (i.e., page-specific
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extraction rules) to extract more entities. It takes advan-
tage of both page structure and text from webpages. For
many cases where only text data is available, several IE sys-
tems [14, 1, 4, 20] also applied bootstrap method, specify
a small set of domain-specific seed instances as input, then
alternately learn patterns from seeds, and extend seeds from
patterns. Our system inherits the semi-supervised bootstrap
learning method for enterprise entity extraction.

A distinctive feature of our system is its use of Semantic
Pattern Graph, which is derived from web-scale data, to re-
score patterns and ease the sparsity issue. The pioneering
work for pattern generation and scoring by Hearst [16] man-
ually evaluated generated patterns to extract hypernym-
hyponym pairs. Previous systems [13, 7, 23] used fully la-
beled corpus to score rules. Later, Carlson et al. [6] assessed
patterns by precision and only promote patterns with high
precision. We implemented their pattern assessment method
in this paper for comparison and shown that his strategy
works poorly on small corpus due to the coverage of high-
precision patterns are very small. Gupta and Manning [15,
14] predicted labels of unlabeled entities to score patterns us-
ing features like distributional similarity and edit distances.
None of the above works well enough in a enterprise set-
ting due to the sparse and biased signals of patterns. Our
system outperforms them by utilizing outside signals from
the web to adjust the biased evaluation of patterns, which
is computed merely using mentions in enterprise corpus.

3. APPROACH

We apply a set expansion framework to extract enterprise
entities class by class. The reason is that letting domain
experts provide a seed set for each entity class is relatively
cheap. Moreover, in some enterprises (e.g., Microsoft), a
partial taxonomy has been built by their employees, which
can serve as the seed set directly. For ease of exposition, we
present the approach below for extracting entities for one
class C. It can easily be generalized to multiple classes. The
bootstrapping process involves following steps (also shown
in Figure 3).

1. Generating candidate pool and labeling data: By scan-
ning all the documents in the enterprise corpus, a can-
didate pool containing all the possible enterprise enti-
ties is generated. Positive entity seeds from class C is



also provided by enterprise insiders/experts. Negative
seeds are automatically generated from the candidate
pool using heuristics, i.e., capitalized ratio;

2. Pattern Extractor: Contextual patterns are created
using context text around all the candidate entities in
both seed set and candidate pool.

3. Evaluating patterns using Multinomial Naive Bayes
model.

4. Ranking entities and adding top confident ones into
seeds. A semi-supervised framework is used to ex-
tract more low-precision/sparse patterns. Each iter-
ation adds the top positive/negative entities into the
seed set and re-scores patterns, after certain amount
of iterations.

5. Semantic Pattern Graph Construction: Bi-grams are
first extracted from web text for semantic recovery. An
Anti Semantic Drifting Filter is then applied to avoid
inconsistency of single pattern’s semantic in different
domains. And with the extended pattern list generated
in enterprise corpus, a Semantic Graph is built using
bi-gram data and enterprise patterns. Details will be
discussed in Section 4.

6. Smoothing pattern scores: A smoother is applied to re-
evaluate each pattern based on their original score and
graph structure, details will be discussed in Section 4.

7. Ranking entities: Smoothed patterns for the class are
applied to the entity candidates. A Multinomial Naive
Bayes classifier ranks the candidate entities and adds
the top entities to C’s dictionary.

In this section, we will explain steps 1-4 in detail. Steps
5-7 will be covered in the next section.

3.1 Generation of Candidate Pool

Different from the previous Web-scale entity extractors,
we generate all possible entity candidates as our first step.
Many enterprise entities and their patterns might be very
sparse, such that using only seed patterns may never dis-
cover them. Finding these sparse entities first takes their
sparse patterns into account in the process. Two restrictions
are applied in the generation of candidate pool. First, the
target term has a part-of-speech (POS) restriction, which is
the POS tag sequence of the candidate phrase. Second, a
noun phrase will be considered as a candidate only if the
phrase appears at least once in the corpus as capitalized
form.

In our framework, we automatically generate negative seeds
from the candidate pool. For a candidate term ¢, sets C; and
U, denote the capitalized and uncapitalized mention sets in
% < threshold to consider t as
a negative seed. We set threshold = 0.1 in our experiments.

the corpus. We require

3.2 Generation of Patterns

We use lexico-syntactic surface word patterns to extract
entities from candidate pool. They are created using con-
texts of words or their lemmatized form within a window
of one before or after a entity candidate in the candidate
pool. Here we collect as many patterns as possible, even
include those that never appear with any positive/negative
samples. These “invisible” patterns might be quite useful
after understanding its semantic relations in the smoothing
phase. Therefore, we take them into account in every step.

We generate flexible pattern by removing {“a”, “an”, “the”}
when matching patterns to the text.

Two reasons are considered to pick one as the window size
instead of two or more: 1) Bigger window size may introduce
more noisy patterns that are irrelevant to the entity. 2) It is
more interpretable to construct semantic pattern graph on
unigram patterns.

To simplify the notation, we will use “+” or “—” to in-
dicate the relative location of lexical patterns. “+” means
the pattern appears after the entity and “—” means the pat-
tern appears before the pattern. Thus, pattern “existing
X” would be “—existing” and “X developer” would be
“+developer” and so on.

«

3.3 Scoring Patterns using Semi-supervised NB

A Semi-supervised Naive-Bayes (Semi-NB) model is ap-
plied here as the ranker and classifier for our task. We treat
lexical patterns as features and treat every candidate in the
candidate pool as testing data. User-provided positive seed
set and automatically generated negative seed set are train-
ing data in our Semi-NB setting. For each target entity e in
both training and testing data, a feature vector is generated,
each feature score on feature f is calculated as:

S(e, f) = log (count(e, f) + 1)

The count(e, f) here means the total mention count of
target entity e with feature (pattern) f. With the real-
valued feature scores, we use a multinomial Naive Bayes to
calculate pattern scores and entity score. Entity scores T'(e)
are calculated as follows:

P(+) T, P(/1)5)
P() T, P(fI-)5D)
P(+)

= S(e, f)(log P(f|+) —log P(f|-)) + log PO
f

T(e) = log P—le) = log

nt(f,+)+1 unt(f,—)+1
Where P(f|+) = %JDU‘_) = % F

is the set of all patterns. To evaluate each pattern, we also
define normalized pattern score R(f) as

R(f) = A(log P(f|+) — log P(f|-))

Where X is the normalization constant to normalize R(f)
to [-1, 1]. The value of X\ is determined by the range of
log P(f|4+) — log P(f|—) across all features. Positive R(f)
shows that pattern f is good signal for extracting enterprise
entities, and vice versa. Therefore we rewrite T'(e) as:

T(e) =Y _S(e,f)R(f) +c
f

Moreover, to ease sparsity in this phase, we applied itera-
tive semi-supervised mechanism into the process. As shown
in Algorithm 1 and Figure 3, we iteratively add top positive
candidates and top negative candidates into the seed set. We
re-calculate pattern scores after certain amount of iterations
(here we chose 10 as our default iteration rounds) and use
the new pattern scores to rank entities. Experimental re-
sults in Section 5 show that the semi-supervised mechanism
works well for alleviating sparsity by adding more seeds and
discover more patterns afterwards. M is chosen as 20 in our
experiment.



Algorithm 1: Semi-NB for Enterprise Entity Extraction

Data: Enterprise Corpus
Result:
Initialization;
for i = 0, i < iteration#, i++ do
Calculate pattern score using seed set;
Rank entities in candidate pool;
Add top M positive entities into the pos seed set;
Add top M negative entities into the neg seed set;

Calculate pattern score using updated seed set;
Smooth patterns using SPG;
Rank entities in candidate pool;

Pattern Normalized Pattern Normalized
Score Score
+developer 1.0 +developer 1.0
+infrastructure 0.82 +infrastructure 0.92
-integrate 0.76 +debugger 0.79
-existing 0.46 Smoothing +integrate 0.78
+implementation 0.40 +documentation 0.50
-new 0.25 +verification 0.15
+documentation 0.23 -debug 0.10
+implementation 0.05
+debugger 0.15
-existing -0.16
+verification -0.1 -new 02
-debug -0.3

Figure 4: Contrast of scores before and after smoothing.
Red/bold patterns are the mistakenly highly ranked gen-
eral patterns, and blue/italic patterns are “good” sparse pat-
terns.

3.4 Learning Enterprise Entities

After the smoothing phase (will be discussed in Section
4), we applied the learned patterns to the extracted entity
candidates using the multinomial naive-bayes classifier. The
candidates are ranked to indicate how possible it is as an
enterprise entity. We then consider the top positive ones as
our extracted entities and output them.

4. SEMANTIC PATTERN GRAPH

As discussed in Introduction, due to the lack of redun-
dancy of entity mentions compared with web-scale data, en-
terprise entity extraction is especially challenging. To be
more concrete, we show here the pattern scores we get with-
out leveraging any public resources or smoothing in Figure
4. All the scores are normalized to scale [-1, 1]. On the left
side, we show some selected pattern scores in the ranked list
before leveraging Semantic Pattern Graph as a smoother.
The numbers on the second column denote how much de-
gree a pattern would tell a “good” enterprise entity. Positive
number means the pattern is a positive signal for enterprise
entity and vice versa. Clearly we can see three different
types of patterns in Figure 4.

1. Type I - Non-Sparse Good Patterns: patterns
like “+develop”, “+infrastructure” and “—integrate”be-
long to this category. These patterns are good indica-
tors for chosen Enterprise Entity class C' and usually
rank pretty high in the pattern list. They appears

frequently with positive seeds and infrequently with
negative seeds, and they normally have rich semantics
strongly correlated to class C;

2. Type II - Bad General Patterns: patterns like
“—eristing” and “—new”belong to this category. These
patterns are bad indicators for C' since they are too
general. They usually do not have any semantics specif-
ically correlated to class C'. They happened to appear
with most positive seeds and not too many negative
seeds, which leads to their high ranks in the pattern
list. Normally if the positive seeds that user provided
are much more popular than negative seeds (which is
commonly the case), bad general patterns will contam-
inate the pattern list severely. The problem of these
patterns being ranked high is that they may discover
non-enterprise entities and make our entity set less ac-
curate.

3. Type III - Sparse Good Patterns: patterns like
“+debugger”, “+wverification” and “—debug” belong to
this category. These patterns have semantics strongly
correlated to class C' but they are not as commonly
used as Type I patterns. They are good indicators
for extracting enterprise entities in class C'. However,
different from Type I patterns, they stand for more
specific/less common operators for class C. In our ex-
ample, every project can both be “debugged” and be
“developed”, but “—develop” is much more common.
Therefore, Type III patterns usually can not rank very
high and they may even possibly be on the negative
side. Here, “—debug” has score -0.3 because it never
appears with the pos seeds and appears with some neg
seeds by accident.

Therefore, if we can demote Type I patterns and promote
Type III patterns properly in the ranked pattern list, we can
ease the trouble that sparsity brings and expect better qual-
ity of enterprise entities. To do so, a deeper understanding
of the semantic relations between patterns is required. How-
ever, it cannot be obtained from enterprise corpus because
of Sparsity again! The solution lies outside of the corpus:
Web Data. It is possible to recover semantic structure from
the web due to the fact that the patterns both enterprise
entities and public entities use are shared. Here we define
the key concept Semantic Pattern Graph as follows:

Definition 1. Semantic Pattern Graph (SPG): A Se-
mantic Pattern Graph is defined as a complete directed
graph G = (V, E), in which V is the pattern set and E
contains edges representing relations between patterns. In
SPG, every pair of distinct patterns is connected by a pair
of edges.

A sample SPG is shown in Figure 5. The scores on the
edges are defined as follows:

|Ep N Eq|
|Ep| 7

[Ep N Eq|

TN
q

Spsq =
Here p,q are two distinct patterns. E,, E; denote the
entity set that can appear with pattern p, ¢ respectively in
web data. If S,_,4 is high, meaning that E, is mostly covered
by E,, in other words, most entities that can appear with
p, can also appear with ¢. Similarly, small S,_,, means that
most entities that can appear with p, cannot appear with
q. With such graph built, we can roughly divide semantic
relations between patterns into three categories.
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Figure 5: Toy Example of Semantic Pattern Graph from
Microsoft dataset. For ease of exposition, only the edges
between “+developer”, “—integrate”, “+infrastructure” and
other patterns are shown in this example.

Type lll
patterns

1. Belonging: If S,,; < S4—p, We say p is a general
pattern of ¢q. Semantically, g belongs to p. Exam-
ples are <“—new”, “4-developer”> and <“+4developer”,
“—debug”>, where “+developer” belongs to “—new”
and “—debug” belongs to “developer”.

2. Equal: If S, = Sq—p and both of them are large, we
say p, q are semantically equal since E,, E,; share most
entities. Examples includes <“+4developer”,
and <“+developer”, “+infrastructure”>

3. Independent: If S,,; =~ Sq—, and both of them
are small, we say p,q are semantically independent,
because E, and E,; have very little overlap.

Revisit Figure 4 and Figure 5, we observe that Type I
pattern are usually in the central layer of SPG, Type II pat-
terns are roughly in top layer and Type III patterns are in
the bottom layer. The layers in Semantic Pattern Graph
are defined by how general the patterns are. Thus, lower
layer entities usually form a Belonging relation to higher
layer entities, while entities in the same layer normally form
Equal or Independent relations. In other words, Type I
patterns belong to Type II patterns and Type III patterns
belong to Type I patterns. Another observation from Fig-
ure 4 is that Type I patterns are usually top patterns in
the ranked pattern list before smoothing, since they obtains
sufficient positive signals from enterprise corpus. These ob-
servations inspire our design of smoothing algorithm.

4.1 SPG Construction

In this section, we explain how we construct the SPG
like Figure 5 from web data. We use Microsoft Web N-gram
data, especially bi-gram sub-portion to construct SPG. Web
Bi-gram dataset contains all possible combinations of pat-
terns and their unigram entities on the web. To avoid un-
necessary computation, we construct SPG solely based on
the patterns appeared in our target corpus. Since web bi-
gram data contains much noise, PMI between patterns and
entities are used on bi-gram frequency to filter out insignif-
icant bi-grams using a threshold. As an example, PMI of
bi-gram “P E” will be calculated as:

—integrate”>

| p(P,E) o count(PE)
& p(P)p(E) — & > count(Px) > count(+E)
Here P refers to the pattern and E refers to the entity.
count(PE) denotes the count of bi-gram “P E” on the web.

pmi(P,E) =

>~ count(Px) denotes the total counts of all bi-grams includ-
ing pattern P and Y count(+E) is defined similarly.

Anti Semantic Drifting Filter: Another problem we
need to address is Semantic Drift of the same pattern on dif-
ferent domains. For example, “—express” may have specific
meaning (genetically express the gene) in biology domain,
while have no such semantics in any other field. That is to
say, if we use the whole bi-gram data for constructing SPG
for a specific domain, the semantic relations may be con-
taminated by semantics from other fields. As an example,
if we see “—express” in computer science corpus, we need
to avoid linking this one to “—translate”, a pattern that
has semantic drift as well in biology domain. In this regard,
we apply a filter on web “pattern-entity” pairs to preserve
semantics of the target domain as much as possible. We use
the entity candidates generated in enterprise corpus only to
filter the “pattern-entity” pairs for building SPG. Thus in
the “—express” case, semantics from biology domain will
be filtered out while constructing SPGs for other fields.

After we filter out all the bi-grams containing those pat-
terns and entities. We then calculate score E, for each pat-
tern p and construct the complete directed graph based on
the statistics.

4.2 Smoothing Algorithm

In this section, we introduce the algorithm of using SPG
for pattern re-evaluation. Back to our “projects” extraction
task for Microsoft internal corpus. We observe in Figure 5
that Type I patterns like “+developer” and “—integrate”,
are in the central layer of a the constructed SPG. Also, we
observe that type II patterns, like “—existing” and “—new”,
are more general than Type I patterns in the graph, indi-
cating their Belonging relations. Type I patterns are more
general than Type III patterns, like “—debug” and “+ver-
ification” in the graph, which also indicates their Belong-
ing relations. Based on those observation, a possible solu-
tion is to locate the Type I pattern in the graph, and demote
their general patterns (Type II) and promote their specific
patterns (Type III). Since we also know that Type I pat-
terns, with high possibility, will rank top in the pattern list,
we then take the top-K patterns in the ranked pattern list,
locate them in the SPG and smooth the rest of the graph
using an induced graph from SPG. The induced graph is
defined as follows:

Definition 2. Induced Smoothing Graph with Seeds
(ISGwS): An Induced Smoothing Graph with Seeds is de-
fined as a directed graph G = (V, S, E), in which V is the
pattern set, S is the seed set and E contains weighted edges
representing smoothing score between patterns in S to pat-
terns in V. Seed set S consists of top-K patterns in the
ranked list before smoothing.

As an example, Figure 6 shows the ISGwS generated
from Figure 5. The new graph contains three seeds “+de-
veloper”, “—integrate” and “+infrastructure”. We eval-
uate how strong the score of a pattern should be smoothed
by top-K patterns using formula as follows:

Tpsqg =K (Sq=p — Sp—q) - Spoq - Sqmp

Here p is the top pattern, ¢ can be any other patterns in
the graph. x = 4 is the normalization constant to scale
Tp—q to [—1,1]. First term (Sq—p — Sp—gq) in the formula
determine the sign of 7,4. Moreover, smoothing effect
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Figure 6: Toy Example of Induced Smoothing Graph with
Seeds after scoring.

grows as the difference between S, and S, grows. The
second and third terms Sp—q, Sq—p convey two things. 1).
The bigger direction Sp—q (or Sq—p, depends on demoting
or promoting) should be close to 1 to strongly show that
there is a clear Belonging relation going on. For example,
Stdeveloper——new should be almost 1. 2). The smaller direc-
tion Sq—p (or Sp—q) should also be big enough, such that the
Belonging relation is not because of noise. For instance,
pattern “+codeflow” in Figure 5 should not be promoted
as much as “—debug” because that Sideveioper—+codefiow
is too small.

We get an Induced Smoothing Graph with Seeds by scor-
ing the edges in Figure 5. The new graph is shown in Fig-
ure 6. By giving three top patterns, we strongly demote
pattern “—new” and “—existing”, promote pattern “—debug”
and “+verification” and not do much to pattern “—integrate”,
“+infrastructure” and “+codeflow”. The scoring approach
satisfies our smoothing goal.

The last step is to average over all top-K patterns in the
graph to smooth every other pattern, as follows:

R(q)=(1=a)R@+ - Y. Thsq-Rlp)

pEtop— K

Here R(q) and R’'(q) denote the pattern score before and
after smoothing respectively. We use a linear combination
of the original score and smoothed score to represent new
score of pattern q. Moreover, we define the following form
as Smoothing Factor:

SF@) = > Tyeu RD)

pEtop— K

After smoothing, we convert the pattern list in left side of
Figure 4 to the right side list, as expected. A key problem
here is how to choose a and K. « controls the balance
between enterprise signals and public signals. K controls
the effective size of trustworthy patterns using only local
signals. Thorough experiment is conducted in Section 5 to
answer this question.

S. EXPERIMENT

In this section, we evaluate the effectiveness of our frame-
work for Enterprise Entity Extraction on real dataset from
Microsoft. We will (1) Demonstrate the quality of discov-
ered enterprise entities using several measurement capturing
both precision and recall. (2) study the two key parameters

a and K in Semantic Pattern Graph smoothing step and
understand the philosophy of picking them properly. (3)
study the entity coverage of using different pattern genera-
tion strategies, to show why it is necessary to consider much
more patterns in enterprises than previous web-scale infor-
mation extractors. (4) case study on 5 specific patterns of
Type IT and Type III to show the correctness of our analysis
in Section 4. All the experiments, if not specifically men-
tioned, are conducted on a PC with 2.4GHz CPU and 16GB
RAM.

5.1 Experimental Setup

We evaluate our system on extracting projects/products
entities in Microsoft Internal Answer Forum corpus. The
forum has 484,221 discussion threads by Microsoft employ-
ees concerning all kinds of technical problems and solutions
from the years 2011 to 2014. For each thread, we concat the
question and its answers together, and only keep the content
for further analysis. We asked Microsoft employees to gen-
erate a complete list of projects/products with the help of
Microsoft Internal Taxonomy. The list contains 2,080 enti-
ties. We randomly pick 57 out of them as the seed set. Some
examples are shown in Table 1. After the Candidates Gen-
eration phase (Section 3.1), 62,708 candidates are extracted
from our corpus. We consider all candidates with capital-
ized ratio % < 0.1 as negative seeds. Our object is
to rank all candidates and make sure the 2,080 entities can
rank higher with the 57 positive seeds and auto-generated
negative seeds.

Microsoft Web N-gram services are used to build Semantic
Pattern Graph. It is a cloud-based platform which extract
N-grams from web-scale data of Bing. Since we only consider
patterns within window size one, only the bi-gram portion
of Web N-gram data is used in our experiment. We also
filter out bi-grams with small relative counts such that arbi-
trary combinations would not contributes to the constructed
SPG. For the major smoothing parameters, we set o = 0.3
and K = 50 as default values.

All the large-scale experiments are done in Microsoft Cos-
mos platform.

office windows xp visual studio sql server
office 365 silverlight | sharepoint 2013 | windows 8
windows 7 biztalk active directory asp

azure outlook windows 2003 outlook

Table 1: Project/Product Seeds from Microsoft

5.2 Baselines and Evaluations

To show that our pipeline performs best for enterprise en-
tity extraction, we compare our work with several baselines
as follows. The comparison with existing entity extractors
are not shown here due to 1) some of them are not public
(e.g., Knowitall and NELL) and they rely mainly on Hearst
pattern or high-precision/low-recall patterns, which leads to
low coverage in enterprise setting 2) some of them are slow
and performance on a small portion is not comparable (e.g.,
Spied from Stanford).

1. Count: Measure the ranking of the term solely by its
count of capitalized form in the whole corpus, score =
log(count + 1).

2. Capi: Measure the ranking of the term by Capitalized



Method P@50 | P@Q100 | P@200 | P@300 | P@500
Count 0.38 0.36 0.385 0.383 0.37
Capi 0.16 0.16 0.165 0.15 0.138
Hybrid 0.46 0.61 0.615 0.613 0.59
NB 0.74 0.71 0.72 0.687 0.66
SmooNB 0.88 0.81 0.82 0.76 0.744
SemiNB 0.84 0.77 0.78 0.753 0.712
Our System | 0.86 0.85 0.84 0.843 | 0.824

Table 2: Precision at top K results for project/product ex-
traction

Ratio: score = %, where C; and U; denote the
capitalized and uncapitalized mentions in the corpus.
3. Hybrid: Rank terms using both count and capitalized
ratio: score = log(count + 1) %
We applied both semi-supervised method and SPG-based
smoothing to ease the sparsity problem. To study the ef-
fectiveness of both factors, we design several ablations as
follows

1. NB: Use pure Naive Bayes model as the ranker and
classifier to extract entities.

2. SemiNB: Use Semi-supervised Naive-Bayes model as
the ranker and classier. The smoothing step is skipped.

3. SmooNNB: Use pure Naive-Bayes as the ranker and
classifier, apply smoothing after the weights of pat-
terns are learned.

4. Our System: Use Semi-supervised Naive-Bayes model

as the ranker and classier, and also apply smoothing
after the weights of patterns are learned.

5.3 Extracting Projects/Products

In this section, we apply our framework on Microsoft Q/A
Forum data and show the main result of projects/products
extraction. We also conduct parameter study for Semantic
Pattern Graph smoothing afterwards.

5.3.1 Main Results

Since we model Enterprise Entity Extraction problem in
a ranking framework, several ranking-based evaluation mea-
sures are proposed to assess both precision and recall of the
result. Two intuitions are emphasized for the result we yield:
1) The 2,080 entities should rank high on the whole, 2) The
top results are real entities with high probability. These
intuitions align with the natural of Enterprise Knowledge
Base, that is with very high precision first being guaranteed,
we then consider about coverage. Using this philosophy, we
design three sets of evaluation measures as follows: a) Pre-
cision, evaluate the precision of top results from Prec@50
to Prec@500. b) Average Precision: AP@500, AP@1000,
AP@2000 as

2= P(R)

APQn = =1

" N

where P(k) means the precision at cut-off k in the entity
list, N means the number of relevant entities in total, and c)

Discounted Cumulative Gain: DCG@500, DCG@1000 and
DCG@2000 as
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Figure 7: Average Precision and Discounted Cumulative
Gain comparison

Where 1(ex € E) is the indicator function showing if k-th
item is an enterprise entity. Precision measurement empha-
sizes the top entity quality and AP/DCG measure the bal-
ance of both precision and recall. The result is shown in
Table 2 and Figure 7.

From the result of Table 2, we observe that our system
achieves above 80% precision even for top 500 results and the
two baselines Hybrid and NB only achieves 59% and 66%
respectively on top 500. To evaluate the Semi-supervised
mechanism and Semantic Pattern Graph smoothing sepa-
rately, we observe that both SmooNB and SemiNB can al-
leviate sparsity and enhance precision. It aligns with our in-
tuition that Semi-supervised Learning can collect more pat-
terns to capture entities with few mentions, while SPG lever-
age public signals to assign more accurate scores to each pat-
tern. Table 2 also tells us that only applying smoothing can
have better performance than only using semi-supervised
learning. However, combing these two methods helps us to
collect more low-precision patterns and assign them high
confident scores, thus can yield best performance.

Figure 7 shows the performance on AP and DCG, with
similar conclusion can be drew. AP and DCG are widely
used to evaluate ranking qualities such as web search en-
gines. We observe that using either Smoothing or Semi-



learning outperforms the local ranker using only signals from
corpus and positive seeds. Similar to precision, SPG smooth-
ing improves more in terms of AP and DCG as well.

5.3.2  Parameter Study

In this section, we study the two major parameters used
in our smoothing framework: 1) Smoothing weight «, 2)
Top pattern size K. Changing « studies the balance be-
tween local signals from enterprise corpus and public signals
from the web, while changing K studies the effective size of
trustworthy patterns using only local signals.

We plot the 3-dimensional chart in Figure 8, in which we
control a from 0 to 1 with size-0.03 steps and K from 10
to 200 with size-10 steps respectively, to evaluate precision
of entities on top 500 results. We first observe that the
performance goes up after we gradually apply smoothing to
the patterns, and it reaches the best precision of 83.05% at
alpha = 0.32 and K = 50. If we observe «a curve standalone,
we see that precision is positively correlated to o before it
hits 0.32. After that, it keeps relatively high precision if
a < 0.7 and drops drastically if o > 0.7. It makes sense in
the sense that 1) Properly leveraged public signals can ef-
fectively alleviate sparsity and 2) Public signal itself cannot
capture the unique semantics used in enterprise.

On the other hand, if we observe K curve standalone,
we find the similar situation where the peak performance
is achieved when K is reasonably large but not too large,
say 50. As discussed before, our philosophy of picking K
is to cover enough “high-precision/low-recall” patterns. If
K is small, the top patterns can not capture most aspects
of extracted class C, and therefore, smoothing phase may
lead to strongly biased adjustment. As we can see from the
figure 8, performance when K = 10, = 0.32 is even lower
than the original one. If K is too large, due to sparsity
issues, many low — precision patterns may also be used as
smoothing seeds and contaminate the rest of the Pattern
Graph.

Currently we use intuitions to choose K = 2% of all pat-
terns and o = 0.3. More study on this issue will be covered
in our future work.

5.4 Pattern Study

In this section, we conduct experiments to look closer to
patterns and answer two questions: 1) Why previous entity
extractors with high-precision/low-recall patterns will fail in
enterprise setting? 2) How well the Semantic Pattern Graph
performs to ease sparsity in a real case?

5.4.1 Pattern Coverage Study

To answer the first question, we implemented several pat-
tern extractors used in previous systems: 1) NELL, 2) Know-
itall and 3) SPIED. As discussed previously, NELL and
SPIED used high-precision/low-recall patterns with part-of-
speech (POS) restrictions to identify entities, while Know-
itall uses mainly Hearst patterns and predefined templates
for entity extraction. For Knowitall, we included all pat-
tern templates mentioned in their paper [9]. For NELL, we
strictly follow their Coupled Pattern Learner [6] approach,
where the patterns follows its POS rules and at most 100
instances/entities and 5 patterns are promoted. Patterns
are ranked by precision and instances are filtered out unless
the number of times it co-occurs with promoted pattern is
at least three times more than the number of times it co-

aphy 06 o 0

Figure 8: Parameter Study for smoothing weight o and top
pattern size K. The performance is evaluated based on Pre-
cision@500

occurs with patterns left. For Spied, since the extracting
details are not disclosed in the paper, we use the same POS
restrictions that NELL used to extract patterns.

System Knowitall | NELL | Spied | Our System

Coverage (%) 21.5 54.4 54.3 81.7

Table 3: Coverage of projects/products using extracted lex-
ical patterns

Table 3 shows the coverage of the 2,080 labeled projects
using different lexical pattern set generated by four systems.
We observe that our system can potentially extract more
than 80% of target enterprise entities, while in the mean-
time, NELL/Spied/Knowitall can only find less than 55%
entities. That is to say, in a sparse setting, even the best ex-
isting classifier /ranker would lose about half of the entities.
Knowitall has the lowest coverage due to the limited pattern
templates it uses. Hearst patterns have poor coverage in en-
terprise corpus. NELL and Spied use more general patterns
confined by specific POS templates can yield better entity
coverage than Knowitall, but are still deficient for a sparse
setting. Because the POS constraints normally require verbs
in the pattern or require explicit relations to another noun
phrases. However, many enterprise entities lack of the re-
dundancy of such patterns. For example in our system,
two patterns “+4platform” and “—native” are good signals
for identifying enterprise entities, but will not be consid-
ered by precious web-scale extractors. Note that 20% of the
entities in Microsoft are still unreachable by our patterns,
some of them are never mentioned in the corpus and some of
them are mentioned only a few times with non-informative
patterns (the general patterns which are not exclusive to
projects/products).

A reasonable concern of introducing less restricted pat-
terns is that it potentially lower our confidence on judging
every single pattern. Hence we introduced smoothing based
on Semantic Pattern Graph to get accurate evaluation of
each pattern.



Pattern Score Before Sr%(;(;‘zging Score After | Mention Count | Examples

... from an attached VS10 debugger.
+debugger 0.157 0-895 0.378 136 ...triggered the jit debugger dialog...

Both the SQL Cluster Backend and...
+backend 0.647 0.983 0.748 108 ...instance of FAST Search Server backend...
+verification -0.094 0.704 0.145 77 Failed authenticode verification of payload.
_existing 0.456 0,532 0.160 1789 ...migrate th('e e'mstmg'ORANGE connection..

..want all existing assignments such for...

...to create new experience I get...
new 0.253 -0-995 -0.121 8239 ...in new Software Distribution policies...

Table 4: Smoothed patterns along with the score before smoothing, smoothing factor and score after smoothing, and the
example entities they appear with. Scores in columns 2-4 are normalized to [-1, 1], where positive score means it is good
pattern for extracting product/project, and vice versa. Score After is the linear combination of Score Before and Smoothing
Factor using a = 0.3. Mention Count indicates how popular the pattern is in the corpus. Entity examples for the first three
patterns are good enterprise entities which are promoted due to the promotion of their patterns, and the entities for last two
patterns are the mistakenly classified entities which are demoted due to the demotion of their patterns.

5.4.2 SPG Smoothing evaluation

As discussed in previous sections, the SPG smoothing im-
proves the pattern accuracy in two ways: 1) Demote Type
1T - Bad General Patterns. 2) Promote Type III - Sparse
Good Patterns. Table 4 revisits the examples we have an-
alyzed and shows the smoothing result for them and enti-
ties they extracted. ‘+debugger’, ‘+backend’ and ‘4verifi-
cation’ are Type III patterns, which are good indicators for
projects/products but are underrated in our corpus. Some
good patterns, like ‘+verification’, are even evaluated as neg-
ative before smoothing. Since all these three patterns have
clear Belonging relation with top patterns like ‘—develop’
(they have highly correlated semantics to ‘—develop’, but
much more specific), their smoothing factor is usually pretty
large. In the chart, we can see their scores after smoothing is
promoted a lot and the entities appear with them can higher
rank. On the other hand, ‘—existing’ and ‘—new’, as we an-
alyzed, are Type II patterns with strongly biased signals.
They don’t indicate any semantics specifically correlated to
project/product. However, they have large positive scores
before smoothing due to the fact that they are commonly
used with any positive seeds. For those general patterns, the
top patterns, like ‘—develop’, have clear Belonging rela-
tions with them. Therefore, their smoothing factor is pretty
negative and the pattern is demoted after smoothing.

One more thing we need to notice is that, Type II patterns
are just too general, the ideal case is that they should play no
role in identifying enterprise entity nor non-enterprise entity.
Therefore, the demoted score should be close to 0. And
our method may potentially over-penalize general patterns
if they happen to not appear with seed entities, with low
probability (Positive seeds are usually very common entities
in the corpus).

According to the mention count column, we can see that
Type II patterns are much more common than Type III
patterns when they appear with our enterprise entities. It
complies with our intuition that 1) Type II patterns are too
general that they may happen to appear with many positive
seeds and 2) Type III patterns are too specific that positive
seeds never appear with them. These examples, along with
the performance comparison in Section 5.3, we conclude that
Semantic Pattern Graph smoothing works well for resolving
sparsity in enterprise setting.

6. CONCLUSION AND FUTURE WORK

This paper introduced our framework for enterprise en-
tity extraction, which involves semi-supervised bootstrap-
ping entity extraction framework using seed sets. It is the
first work to introduce the concept of Semantic Pattern
Graph into entity extraction problem and model the seman-
tics between contextual patterns to enhance entity coverage
and precision. With detailed analysis, we show that in a
sparse setting, leveraging public web-scale data to under-
stand semantic relations between lexical patterns can ef-
fectively alleviate the sparsity. Hence, many entities with
very little evidence can be possibly correctly extracted. In
the experiment part, we also show that the smoothing al-
gorithm using SPG can significantly improve precision and
recall of learned enterprise entities. We also conduct sev-
eral other experiments to show our smoothed extractor out-
performs methods without understanding pattern relations.
Moreover, the Semantic Pattern Graph and its smoothing
algorithm is general enough to be applied into many other
Information Extraction tasks on closed-domain corpus (even
other NLP tasks).

In future work, we plan to extend our size-1 patterns into
more general patterns to adapt more complicated environ-
ment. Another research direction is to utilize Semantic Pat-
tern Graph in a more complicated way. Conducting cluster-
ing on lexical patterns in a SPG may help us find several
pattern groups with similar semantics, such that the way
of picking seed patterns can be more balanced in different
pattern groups. We also plan to generalize the Semantic Pat-
tern Graph component into many other IE tasks, including
relation extraction and entity typing.
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