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ABSTRACT
Collaborative networks are composed of experts who coop-
erate with each other to complete specific tasks, such as
resolving problems reported by customers. A task is posted
and subsequently routed in the network from an expert to
another until being resolved. When an expert cannot solve
a task, his routing decision (i.e., where to transfer a task) is
critical since it can significantly affect the completion time
of a task. In this work, we attempt to deduce the cognitive
process of task routing, and model the decision making of
experts as a generative process where a routing decision is
made based on mixed routing patterns.
In particular, we observe an interesting phenomenon that

an expert tends to transfer a task to someone whose knowl-
edge is neither too similar to nor too different from his own.
Based on this observation, an expertise difference based rout-
ing pattern is developed. We formalize multiple routing
patterns by taking into account both rational and random
analysis of tasks, and present a generative model to com-
bine them. For a held-out set of tasks, our model not only
explains their real routing sequences very well, but also accu-
rately predicts their completion time. Under three different
quality measures, our method significantly outperforms al-
l the alternatives with more than 75% accuracy gain. In
practice, with the help of our model, hypotheses on how to
improve a collaborative network can be tested quickly and
reliably, thereby significantly easing performance improve-
ment of collaborative networks.
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1. INTRODUCTION
Collaborative networks are abundant in real life, where ex-

perts collaborate with each other to complete specific tasks.
In service businesses, a service provider often maintains an
expert network where service agents collaboratively solve
problems reported by customers. Bugzilla[1] is a bug track-
ing system where software developers jointly fix the report-
ed bugs in projects. In a classic collaborative network, upon
receiving a task, an expert first tries to solve it; if he fails,
the expert will route the task to another expert. The task
is completed until it reaches an expert who can provide a
solution.

Figure 1: A Sample Collaborative Network

Figure 1 shows a sample collaborative network with task
routing examples. Task t1 starts at expert A and is resolved
by expertD, and task t2 starts at expertD and is resolved by
expert F . The sequences A → B → C → D and D → E →
F are called routing sequences of task t1 and t2 respectively.
The number of experts on a routing sequence measures the
completion time of a task. The average completion time
of tasks signifies the efficiency of a collaborative network in
problem solving: the shorter, the more efficient.

When the number of experts in a collaborative network
becomes large, to whom an expert routes a task significant-
ly affects the completion time of the task. For example, in
Figure 1, task t1 can be directly routed to the resolver D

from A. In this case the routing decision made by expert A
is critical. Therefore, understanding how an expert makes a
certain routing decision and detecting his routing behavioral
patterns will help us identify the inefficiency of a collabora-
tive network.

The task resolution problem in collaborative networks has
been studied before. Shao et al.[18] propose a sequence min-
ing algorithm to improve the efficiency of task resolution in
IT service. Miao et al.[12] develop generative models and
recommend better routing by considering both task routing
sequences and task contents. In [22], Zhang et al. study the
resolution of prediction tasks, which are to obtain probabili-
ty assessments for a question of interest. All of these studies



aim at developing automated algorithms that can effectively
speed up a task’s resolution process. However, they largely
ignore human factors in real task routing. Take Figure 1 as
an example. Why does expert A route task t1 to B instead
of D? Is it because he does not understand t1 well, thus
randomly distributing it to B, or he believes B has a better
chance to solve it, or B has a better chance to find the right
expert to solve it? Does expert A make more rational deci-
sions than random decisions? While it is very hard to infer
A’s decision logic based on an individual task, it is possible
to infer it by analyzing many tasks transferred and solved by
A, B and D. In this work, we focus on analyzing real expert
networks and try to understand experts’ decision logic, i.e.,
what kind of routing patterns an expert follows when de-
ciding where to route a task. This understanding will help
detect the inefficient spots in a collaborative network and
give guidance to the management team to provide targeted
expert training.
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Figure 2: Task Transfer Frequency vs. Expertise

Difference.

After analyzing thousands of tasks in an IBM service de-
partment, we recognize that in many cases, an expert might
not route a task to the best candidates (in terms of the pos-
sibility to solve the task), especially when the task is far
beyond his expertise. Instead, the task is transferred to an
expert whose speciality is between the current expert and
the best candidates. This routing pattern is clearly indi-
cated by Figure 2. Figure 2 plots the histogram of exper-

tise difference ‖EA−EB‖
‖EA‖

, which is calculated when expert A

transfers a task to B. EA represents the expertise of A and
is automatically learnt based on A’s task resolution records.
It is observed that an expert tends to transfer a task to some
expert whose expertise is neither too similar to nor too dif-
ferent from his own. This phenomenon can be explained as
follows: An expert is less likely to transfer a task to another
expert whose expertise is very similar, given that the current
expert already fails to resolve the task. On the other hand,
if the expertise of two experts are very different, they might
actually specialize in quite different domains; therefore, an
expert might not be clear about the other’s speciality and
few tasks would be transferred between them. We conjec-
ture that it is like the situation when a computer science
professor gets a quantum physics problem, he might con-
sult a CS professor who is working on quantum computing,
rather than directly ask a physics professor who is special-
ized in quantum physics, though the latter might be a better
candidate.
Inspired by the above observation, we introduce a routing

pattern describing the general trend of expert A transfer-
ring a task to B, based on the expertise difference between
A and B. Apart from this routing pattern, another two are

also formalized. Specifically, when an expert finds there are
five candidates to dispatch a task to – all of them can solve
the task, who is he going to contact? A straightforward
approach is to randomly pick one. An alterative is to look
at the capacity of these candidates and route more tasks
to an expert who can process more tasks. An expert could
follow a certain pattern when deciding where to transfer a
task. Different experts might adopt each routing pattern to
a different degree and demonstrate different routing behav-
ioral characteristics. This study is going to infer the routing
patterns as well as experts’ preferences over them, from the
historical routing data, and finally give insightful analysis of
experts’ performance in a collaborative network.

The technical contributions of this work are three-fold:
First, to the best of our knowledge, we make the first at-
tempt to analyze the routing behaviors of experts in a col-
laborative network in a large-scale, quantitative manner. We
present a general framework to model the decision making
and cognitive process of experts, and instantiate the frame-
work with multiple routing patterns potentially followed by
an expert. A generative model is then presented to model
experts’ routing decisions as a result of mixed routing pat-
terns. After trained on a historical task set, the model can
uncover experts’ underlying decision logic and explain real
routing sequences in a held-out testing set very well.

Second, our analytical model can accurately predict the
completion time of a task before actually routing it in the
network. On the one hand, we verify that our analysis of
experts’ routing decision making reflects the real one, in the
sense that a task navigated according to our model shall be
completed in a similar time as in the real situation. On the
other hand, estimating task completion time is important
itself, because an accurate estimate of completion time can
provide early signals on the “difficulty” or “abnormality” of
a task, and managers can allocate more resources and take
early actions to deal with such tasks and shorten customer
waiting time.

Third, it is usually expensive, if not impossible, to al-
ter real-world collaborative networks for hypothesis testing,
e.g., providing more training to a few critical but inefficient
experts or changing network structures for better perfor-
mance. Since our analytical model has shown similar char-
acteristics to the real human routing in collaborative net-
works, it can be used to conduct virtual hypothesis testing.
Through case studies, we discuss how to utilize our model
to optimize collaborative networks.

The rest of the paper is organized as follows. In Sec-
tion 2, we briefly describe our problem setting. In Section 3,
we discuss multiple routing patterns potentially adopted by
an expert, followed by Section 4, where a generative model
combining these patterns together is presented. Section 5
details the estimation of task completion time, which serves
as both an evaluation metric of our model and an important
problem our model can deal with. Section 6 presents our
detailed experimental results. Related work is reviewed in
Section 7. We conclude this work in Section 8.

2. PRELIMINARIES
We first clarify the notations used in this work. E =

{e1, e2, ..., ei, ..., eG} is a set of experts in a collaborative
network. Ni denotes the 1-hop neighborhood of expert ei
in the network, i.e., the expert set ei has ever routed tasks
to. W = {w1, w2, ..., wn, ..., wN} is a set of words used to



describe the tasks. T = {t1, t2, .., tm, ..., tM} is a set of tasks
resolved by the collaborative network, where each tm is an
N × 1 word vector with each dimension recording the word
frequency in the task description. Apart from the textual
description, each task is also associated with a routing se-
quence starting from an initial expert to the resolver of the
task.

ID Entry Time Expert
599 New ticket: the available space 9/14/06 IN039

on the /var file system is low 5:57:16
599 ...(operations by IN039)... ... IN039
599 Ticket 599 transferred ... IN039

to SAV59
599 ...(operations by SAV59)... ... SAV59
599 Ticket 599 transferred ... SAV59

to SAV4F
599 ...(operations by SAV4F)... ... SAV4F
599 Problem resolved: free up 9/14/06 SAV4F

disk space in the file system 9:57:31

Table 1: The Lifetime of An Example Task.

Table 1 shows one example problem ticket in an IT service
department. The ticket with ID 599 is a problem related
to operating system, specifically, the low percentage of the
available file system space. It was assigned to or initiated
by expert IN039, then routed through expert SAV59, and
finally resolved by expert SAV4F.
In this paper, we study the following problems: How

does an expert in a collaborative network make a routing de-
cision? Is there any pattern an expert generally follows when
routing a task? Different from previous studies [12, 18, 22],
we do not propose algorithms to perform more efficient rout-
ing. Instead, we hope to understand the routing decisions
actually made by the experts in a collaborative network.

3. MODELING ROUTING DECISIONS
Our intuition is that an expert makes a routing decision

by adopting a certain routing strategy either consciously or
unconsciously. For example, an expert might decide where
to route a task by evaluating the next expert’s possibility to
solve the task.
We advocate a general and extensible methodology to an-

alyze the routing decision making process, which consists of
two routing strategies: Task-Neutral Routing (TNR) and
Task-Specific Routing (TSR). Under the Task-Neural Rout-
ing, an expert does not take into account the specificity of
a task when making a routing decision, and treat different
tasks equivalently. Under the Task-Specific Routing, how-
ever, an expert makes a routing decision by analyzing the
specific task being transferred.
We attempt to deduce the cognitive process of an expert

during task routing, and model the decision making of an
expert as a generative process where a routing decision is
generated based on the two routing strategies. Each routing
strategy is respectively combined with three basic routing
patterns, which overall produces six particular routing pat-
terns. Our generative model, with these six routing pattern-
s as mixture components, is then proposed to describe the
process of an expert’s decision making.

3.1 Routing Patterns
Given a task, we assume an expert ei first establishes a

pool of candidates, C, to dispatch the task to. The dif-
ference between the Task-Neutral Routing (TNR) and the

Task-Specific Routing (TSR) lies in the composition of C. In
terms of TNR, C contains all of his neighbors Ni. In terms
of TSR, C is limited to experts who are able to solve the cur-
rent task in Ni. TNR accommodates the situations when an
expert does not understand a task very well, or an expert
has a careless work attitude, and thereby making a routing
decision irrespective of the specific task and its possible re-
solvers; whereas TSR mimics the situation where an expert
assesses others’ ability to solve a task before dispatching it.

Once C is established, ei selects one expert from C to
route the task to, based on a certain routing pattern. We
identified three basic routing patterns:

Uniform Random (UR). This routing pattern implies that
an expert makes a decision by randomly selecting one of the
candidates in C with an equal probability.

P (ei
t
−→ ej | UR) = 1(ej ∈ C)

1

|C|
(1)

Where ei
t
−→ ej denotes the event that expert ei transfers

task t to ej . 1 is an indicator function: 1(ej ∈ C) picks
value 1 if ej ∈ C holds otherwise 0.

Volume-biased (Load-based) Random (VR). Under this rout-
ing pattern, an expert also randomly dispatches tasks, but
with a rate proportional to the volume of tasks previously
dispatched. VR mimics the situation where the task pro-
cessing capacity could vary for different experts. VR can
be regarded as an expert’s reaction when he finds tasks are
processed slowly by some of his collaborators. Let volume
vij denote the number of transferred tasks from ei to ej .

P (ei
t
−→ ej | VR) = 1(ej ∈ C)

vij∑
ek∈C vik

(2)

Expertise Difference (EX). In addition to the above two
routing patterns, this one is derived from the observation
shown in Figure 2: An expert is more likely to send a task
to another expert whose expertise is neither too close nor
too far from his own. Let fij denote the general trend of
expert ei sending a task to ej , given their expertise.

P (ei
t
−→ ej | EX) = 1(ej ∈ C)

fij∑
ek∈C fik

(3)

To estimate fij , we build a model based on the observa-
tion in Figure 2. The relative expertise difference between

expert ei and ej , is calculated as Δ(ei, ej) =
‖ei−ej‖

‖ei‖
, where

for simplicity ei is reused to represent the expertise vector
of expert ei. The expertise estimation problem will be dis-
cussed in Section 3.3. Based on Figure 2, we assume for
those tasks transferred, the relative expertise difference be-
tween a task sender and a task receiver follows a log-normal
distribution with parameters μ and σ2. We made this as-
sumption due to the non-negative nature of Δ(ei, ej) and the
asymmetric shape of the distribution. However, in our ex-
periments, we also test a model with a normal distribution
to estimate fij and show that the log-normal distribution
works better. Under the log-normal distribution, expert ei
is more likely to transfer tasks to ej once Δ(ei, ej) obtains
a higher probability density; therefore, fij is estimated by:

fij ∝
1

Δ(ei, ej)
e
−

[lnΔ(ei,ej)−μ]2

2σ2 (4)



Note that the histogram in Figure 2 is the accumulation
of all possible routing patterns, not only the expertise dif-
ference pattern. Later, in the experiments, we will show
that the EX pattern with μ and σ2 directly estimated from
Figure 2 does not perform the best. Instead, parameters
μ and σ2 shall be estimated with more emphasis on tasks
transferred following the EX pattern, which are not known a
priori. We will learn them simultaneously through a mixture
model with all the routing patterns considered.
To summarize, the three basic patterns {UR, VR, EX}

combined with the Task-Neutral Routing and Task-Specific
Routing strategy, generate six particular routing patterns:
TNRur, TNRvr, TNRex, TSRur, TSRvr, and TSRex.

3.2 Task-Specific Routing
TNR does not take into account the distinctiveness of a

specific task. In contrast, TSR means that an expert makes
a routing decision based on the specific task and matches it
with potential resolvers. Given expert ei to transfer task t,
his routing decision under TSR is influenced by two factors:
(1) whether an expert can solve the task or not, and (2)
how familiar ei is with that expert. The first factor, only
related to the task itself, can be conducted by a classification
process without involving ei. The classification identifies
a subset of ei’s neighbors who can solve the task, as the
candidate pool C. We build the classifier based on the task
resolution records of experts in Section 3.3. The second
factor is a human factor which can be modeled by the same
routing patterns we previously introduced such as UR, VR,
and EX. Overall, TSR will check the neighborhood of ei, run
the classifier, and establish a set of candidates C who are
capable of solving t. It then selects one particular candidate
from C based on one of {UR, VR, EX}. In a special case
where C = ∅, TSR is reduced to TNR where we simply use
the entire neighborhood Ni as the candidate pool.
The success of our work is related to the recognition of

human factors in task routing. A straightforward routing
pattern considering the specificity of a task is to transfer
the task to an expert with the highest probability to solve
it. Our experiments show that such a routing pattern cannot
capture the real characteristics of human decision making,
such as randomness, uncertainty, and sub-optimality. We
observe that similar tasks are often routed to very different
experts. Moreover, one usually does not search for people
who are most likely to solve a problem due to, e.g., unfa-
miliarity with those people. Instead, he might select a close
collaborator who should be able to solve the problem, but
not necessarily with the highest probability.

3.3 Expertise Estimation
In TSR strategy and the EX routing pattern, we need

to estimate an expert’s expertise and capability to solve a
task. Intuitively, the capability depends on both the expert’s
expertise and the task description. We resort to a classic l-
ogistic regression model [6] that takes an expert’s expertise
vector and a task’s word vector as input, and outputs the
expert’s capability to solve the task. In the logistic mod-
el, the probability for expert ei to solve task t, denoted as
P (ei, t), is defined as follows:

P (ei, t) =
1

1 + exp(−(W1t+W2ei + b))
(5)

For simplicity, the expertise vector for expert ei is of the
same length as task t, i.e., an N × 1 vector. W1 and W2

are the 1×N weights respectively associated with the word
vector of a task and the expertise vector of an expert. Each
component of W1 and W2 denotes the contribution of the
corresponding dimension in t or ei to the capability predic-
tion. b is a bias scalar in the logistic model. The expertise
vectors ei’s are not known a priori and they are to be esti-
mated together with the model parameters {W1,W2, b}. We
use W = {W1,W2, b, e

′
is} to denote all the parameters.

Given a task t and its routing sequence, e.g., ei → ... →
ek, we observe the groundtruth regarding the resolution ca-
pability: The last expert ek solves t and any other expert on
the sequence does not solve it. Therefore, we can formulate
a training dataset composed of <expert, task> pairs as in-
stances and {0, 1} as the observed probability of an expert
to solve a task, e.g., 0 for <ei, t> while 1 for <ek, t>.

The optimal solution of parameters in the model is ob-
tained by minimizing the cross-entropy error function [6],
based on the <expert, task> pairs in the training dataset :

argmin
W

∑
<ei,t>

[−P ∗(ei, t) logP (ei, t)−(1−P ∗(ei, t)) log(1−P (ei, t))]

(6)

where P ∗(ei, t) is the observed probability for expert ei to
solve task t. After the parameters are learnt, given a task
and an expert, one can predict the probability for the expert
to solve the task using Eqn. 5. Under Task-Specific Rout-
ing, when transferring task t, expert ei identifies a subset
of his neighbors Ni as the candidate pool C = {ej ∈ Ni :
P (ej , t) ≥ δ}, where δ is set at 0.5 in our implementation.
Experts in C have a probability to solve t larger than a
threshold, and are estimated capable to solve the task.

Essentially, the expert capability estimation is casted as
a traditional classification problem. The logistic model we
employed is very similar to classification using SVM [9] with
a linear kernel [6]. The difference lies in that the expertise
vector of an expert is not known a priori. One might con-
sider using the average word vector of the tasks resolved by
an expert to represent the expert’s knowledge. However, in
practice, this method can be problematic, because we ob-
serve that there might be many experts in a network that
serve as “intermediate transferrers” and did not resolve any
tasks. In our case, we can also utilize those tasks unresolved
by an expert to estimate his expertise in Eqn. 6. Besides, by
optimizing the cost function over the expertise vectors, we
can give lower cost function than fixing them at somewhere
non-optimal.

4. GENERATIVE MODEL
In this section, we present a generative model to put the

previously discussed routing patterns together and describe
an integrated decision making process.

Figure 3 shows the graphical representation of our gener-
ative model. We first clarify the notations in the figure as
follows: (1) |E| denotes the number of experts while |Ti| is
the number of tasks expert ei ∈ E has ever transferred. A
plate means replicating a process for multiple times. (2) θi
is the K × 1 mixture weights of different routing patterns
for expert ei, where K is the number of routing patterns. In
our current setting, we have K = 6 routing patterns, from
TNRur to TSRex. The k-th component of θi reveals the
probability that the k-th routing pattern is adopted by ei
to transfer a task. (3) α, a K × 1 vector, is parameters in a
Dirichlet prior, and serves as a constraint of all the mixture
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Figure 3: Graphical Representation of Our Model.

weights θi’s. A Dirichlet prior for the mixture weights tend-
s to alleviate over-fitting problems [7]. Besides, with the
Dirichlet prior, the mixture weight θnew for a new expert
can be naturally assigned. (4) Zi,t is the label of the routing
pattern employed by expert ei when transferring task t. (5)
βi,t, a K × |Ni| matrix, defines the probability distribution
of expert ei transferring task t to an expert in his neighbor-
hood Ni, under K routing patterns. Particularly, each row
of βi,t is filled by a probability distribution under one of the
six routing patterns, as defined in Section 3.1. For experts
in Ni but not in the candidate pool C, the corresponding
elements in βi,t are naturally filled with 0. For patterns
irrelevant to EX, we pre-compute their probability distribu-
tions and fill corresponding rows of βi,t, while TNRex and
TSRex are parameterized with μ and σ2. Note that βi,t is
in the inner plate of the graphical model because βi,t is as-
sociated with expert ei and task t. (6)The shaded variable
ri,t indicates the observed receiver of task t transferred from
expert ei.
Figure 3 conveys that expert ei decides where to route

task t based on multiple routing patterns βi,t and his pref-
erence θi towards adopting different routing patterns. Now
we formally describe the generative process as follows:

For each expert ei to transfer tasks,

– Draw the mixture weights of K routing patterns:
θi ∼ Dir(α).

– For each task t to be transferred by expert ei,

∗ Draw a pattern label: Zi,t ∼ Mult(θi).

∗ Draw an expert from Ni to receive t:

ri,t ∼ P (ei
t
−→ ej |Zi,t, β

i,t), ∀ej ∈ Ni.

For each task t ∈ Ti, the transfer relationship for t is repre-

sented by ei
t
−→ ri,t. We formulate the likelihood of observing

all the task transfer relationships as follows:

L = P (ei
t
−→ ri,t,∀t ∈ Ti,∀ei ∈ E|α, μ, σ2) (7)

Since a routing decision of an expert is independent from
that of another expert while the routing decisions of the
same expert for different tasks are not independent from
each other, we can rewrite L in the following way:

L =
∏
ei∈E

P (ei
t
−→ ri,t,∀t ∈ Ti|α, μ, σ

2)

=
∏
ei∈E

∫
θi

P (θi|α)P (ei
t
−→ ri,t , ∀t ∈ Ti|θi, μ, σ

2) dθi

(8)

Here,
P (ei

t
−→ ri,t , ∀t ∈ Ti | θi, μ, σ

2)

=
∏
t∈Ti

{
∑
Zi,t

P (Zi,t|θi)P (ei
t
−→ ri,t | Zi,t, β

i,t)}
(9)

where P (Zi,t|θi) = θi,k and P (ei
t
−→ ri,t | Zi,t, β

i,t) = β
i,t
k,r,

if Zi,t = k, i.e., the k-th routing pattern is adopted. β
i,t
k,r is

the probability for ei routing task t to expert ri,t, under the
k-th pattern. β

i,t
k,r shall contain parameters μ and σ2 if the

k-th pattern is TNRex or TSRex.
Finally, we resort to the maximum likelihood estimation

approach to optimize the parameters in the model:

arg max
α,μ,σ2

logL (10)

4.1 Inference
Now we discuss how to estimate the model parameters in

detail. The latent variables {θi’s, Zi,t’s} are not independent
of each other, which makes their true posterior distributions
computationally intractable. In this section, we employ a
variational approach [6] to solve our model.

4.1.1 Variational Inference
We introduce a variational distribution Q in which the la-

tent variables are independent of each other to approximate
their true posterior distribution, i.e., Q(θ, Z) = Q(θ)Q(Z),
where θ = {θi, ∀ei ∈ E} and Z = {Zi,t, ∀ei ∈ E , t ∈ Ti}.
According to the variational distribution, Q(θi) ∼ Dir(γi),
Q(Zi,t) ∼ Mult(φi,t), , where γi and φi,t areK×1 variation-
al parameters. γi and φi,t have significant meanings where
γi represents the variational prior for θi and reflects which
routing pattern ei tends to adopt, while φi,t is the varia-
tional posterior mixture weights of different routing patterns
adopted by ei when transferring task t. Given the observed
data, both γi and φi,t will be derived automatically.

Under the variational distribution and Jensen’s inequali-
ty, we can maximize the lower bound of the log likelihood,
instead of directly maximizing logL which is intractable.

logL ≥ EQlogP (D, θ, Z|α, μ, σ2) +H(Q) = �logL� (11)

where D denotes all the observed task transfer relationships.
We expand the lower bound of the log likelihood as follows:

�logL� =
∑
ei∈E

EQ logP (θi|α) +
∑
ei∈E

∑
t∈Ti

EQ logP (Zi,t|θi)

+
∑
ei∈E

∑
t∈Ti

EQ logP (ei
t
−→ ri,t|Zi,t, μ, σ

2)

+H(Q(θ, Z))
(12)

Each term on the right-hand side of the above equation, is
a function over the model parameters as shown in Eqn. 13
to Eqn. 16.

EQ logP (θi|α) = − logB(α) +
∑
k

(αk − 1)[ψ(γi,k)− ψ(
∑
k

γi,k)]

(13)

where B(α) =
∏

k Γ(αk)

Γ(
∑

k αk)
is the normalization constant of the

Dirichlet distribution Dir(α).∑
t∈Ti

EQ logP (Zi,t|θi) =
∑
t∈Ti

∑
k

φ
i,t
k

[ψ(γi,k)− ψ(
∑
k

γi,k)] (14)



The third term

∑
t∈Ti

EQ logP (ei
t
−→ ri,t|Zi,t, μ, σ

2) =
∑
t∈Ti

∑
k

φ
i,t
k

log βi,t
k,r

(15)

As discussed in Eqn. 9, βi,t
k,r contains parameters μ and σ2

if the k-th pattern is TNRex or TSRex.
The entropy term

H(Q(θ, Z))

= −
∑
ei∈E

[EQ logQ(θi|γi) +
∑
t∈Ti

EQ logQ(Zi,t|φi,t)]

=
∑
ei∈E

[logB(γi)−
∑
k

(γi,k − 1)(ψ(γi,k)− ψ(
∑
k

γi,k))]

−
∑
ei∈E

∑
t∈Ti

∑
k

φ
i,t
k

log φi,t
k

(16)

4.1.2 Parameter Estimation
The model parameters are estimated by using the varia-

tional expectation-maximization (EM) algorithm. In the E-
step, we update the variational parameters {γ’s, φ’s} while
in the M-step, we update the model parameters α, μ, and
σ2 so that 	logL
 is maximized.
Specifically, the E-step updates the variational parameters

according to Eqn. 17 and 18.

φ
i,t
k

∼ β
i,t
k,r

exp(ψ(γi,k)− ψ(
∑
k

γi,k)− 1) (17)

γi,k = αk +
∑
t∈Ti

φ
i,t
k (18)

During the M-step, we maximize the lower bound over the
parameter α, μ, and σ2, by utilizing the classic L-BFGS opti-
mization algorithm [11]. The derivatives over the parameter
α are calculated in Eqn. 19.

∂�logL�

∂αk

=
∑
ei∈E

[−ψ(αk) + ψ(
∑
k

αk) + ψ(γi,k)− ψ(
∑
k

γi,k)]

(19)

Derivatives over μ and σ2 depend on the routing pattern
TNRex and TSRex, as well as the mixture weights corre-
sponding to the two patterns.

∂�logL�

∂μ
=

∑
ei∈E

∑
t∈Ti

2∑
k=1

(ri,t ∈ Ck)×
φ
i,t
k

β
i,t
k,r

×
fir

∑
ej∈Ck

Xij

σ2(
∑

ej∈Ck
fij)2

(20)

∂�logL�

∂σ2
=

∑
ei∈E

∑
t∈Ti

2∑
k=1

(ri,t ∈ Ck)×
φ
i,t
k

β
i,t
k,r

×
fir

∑
ej∈Ck

Yij

2(σ2
∑

ej∈Ck
fij)2

(21)

where we assume TNRex and TSRex are the 1st and 2nd

mixture component respectively. Ck is the candidate pool
established under TNR or TSR by ei when routing task t.
fir is the general trend of ei sending a task to ri,t, based
on Δ(ei, ri,t). Xij

.
= fij(lnΔ(ei, ri,t) − lnΔ(ei, ej)) and Yij

.
=

fij [(lnΔ(ei, ri,t)− μ)2 − (lnΔ(ei, ej)− μ)2].
The E-step and M-step are performed iteratively until the

algorithm converges, which indicates that the current model
parameters fit the observed training data.

5. TASK COMPLETION TIME
In a real collaborative network, a task is routed and com-

pleted as long as it reaches an expert who can solve it. The
completion time (CT) of a task is defined as the number of
experts in its routing sequence. Estimation of the comple-
tion time before actually routing a task is critically useful,
as it can raise attention for those troublesome tasks and ask
the network allocate more resources to handle such tasks.
The estimated completion time can also be used to evaluate
routing models. A good routing model shall reflect the real
decision making process and give the estimation as accurate
as possible.

Experts that can resolve a task are not unique and are
not known before the task is actually routed. For a new
task, one cannot estimate its completion time by targeting
a unique “resolver”. Instead, we need to consider multiple
potential resolvers and multiple routing sequences.

Given a task and its initial expert, our generative model
can generate a routing sequence of experts to process the
task. Specifically, given a task t and its current holder, ei,
the receiver ri,t can be sampled according to our generative
process described in Section 4. Once ri,t is obtained, it is
treated as the current holder of t; the same procedure is re-
peated to produce the next receiver, until we have L experts
to process t in sequence. Although the initial expert to deal
with a task is important, in our work, we do not particular-
ly deal with the assignment of an initial expert to a certain
task. We assume that the initial expert to a task is given
beforehand: it is either decided by the task requestor (e.g.,
a customer) or by the system.

Task t will stop routing once an expert can solve it. Since
each expert in the routing sequence has a probability to solve

the task, the completion time can be estimated (ĈTt) as the
expected number of experts having accessed the task when
it is solved.

ĈTt =

L∑
m=1

m

m−1∏
n=1

[1− P (rn, t)]P (rm, t) (22)

where rm (rn) is the m-th (n-th) expert in a routing se-
quence.

∏m−1
n=1 [1 − P (rn, t)]P (rm, t) gives the probability

for the m-th expert in the sequence to solve the task while
the previous m− 1 experts fail to, where P (rm, t)’s are esti-
mated using Eqn. 5. Since the probability diminishes quite

quickly, we set L = 10 in practice. Indeed, ĈTt is not going
to change much when L is beyond 10. We generate multi-
ple routing sequences for each task, estimate the completion
time based on each sequence using Eqn. 22, and calculate
the average as the final estimated completion time.

6. EXPERIMENTS
In this section, we validate the expertise difference routing

pattern and evaluate the accuracy of our method in model-
ing expert behaviors on various real-life datasets. We will
further demonstrate that with the help of our model, better
recommendations on expert training could be automatically
obtained and provided to managers for improving the per-
formance of collaborative networks.

6.1 Datasets
We use real-world problem ticket data collected from a

problem ticketing system in an IBM IT service department
throughout 2006. Three datasets in different problem cate-



gories are explored: DB2, WebSphere, and AIX. DB2 con-
tains problem tickets on database usage and management;
WebSphere is a set of problem tickets on the enterprise soft-
ware IBMWebSphere[2]; and AIX is the category of problem
tickets on operating systems.

Datasets
# of # of % of tasks with CT
tasks experts = 2 = 3 = 4 ≥ 5

DB2 26,740 55 44.2 34.3 16.5 5.0
WebSphere 65,786 234 39.0 36.2 20.0 4.8

AIX 120,780 404 40.0 39.4 14.2 6.4

Table 2: Three Datasets on Ticket Resolution.

The details of the three datasets, i.e., the number of tasks,
experts, and the distribution of completion time (CT), are
shown in Table 2. The three datasets involve approximately
50 to 400 experts. Understanding how an expert makes a
certain routing decision among many candidates is a mean-
ingful yet potentially challenging problem. As evident in
these datasets, the completion time for different tasks pos-
sesses a large diversity, which drives us to analyze expert
routing behaviors that possibly lead to such diversity. For
each dataset, we randomly partition it into two disjoint sub-
sets: 75% of tasks for training, 25% for testing.

6.2 Evaluation Measures
To evaluate our generative model in capturing the real

decision making process of an expert, we employ two types
of measures: (1) Routing Sequence Likelihood. We compute
the log likelihood (LL) of the routing relationships in the
held-out testing dataset, according to Eqn 8. The higher
the log likelihood, the better a model explains the routing
decisions of experts. (2) Predicted Completion Time. The
routing decision of an expert significantly affects the com-
pletion time of a task. Our model is considered valid if a
task routed according to our generative process can achieve
a similar completion time as it does in real situations. Two
measures are employed to calculate the difference between

the estimated, ĈT and the real completion time, CT.

1. Mean Absolute Error (MAE).

MAE =
1

|Test Set|

∑
t∈Test Set

|ĈTt − CTt|

2. Step Loss Measure (SL). Instead of directly comput-

ing the difference between ĈTt and CTt as errors, step
loss measure [15] incorporates some tolerance of the d-
ifference. If the difference is larger than the tolerance,
one estimation mistake is made. We set the tolerance
in our case as 1. That is, if the difference between ĈTt

and CTt is within 1, the estimation is regarded as cor-
rect; otherwise, it is regarded as wrong. We calculate
the percentage of the wrong estimations in the testing
data set. The lower, the better.

SL =
1

|Test Set|

∑
t∈Test Set

1(|ĈTt − CTt| > 1)

where 1 is an indicator function: it picks value 1 if the

condition |ĈTt − CTt| > 1 holds otherwise 0.

6.3 Evaluation Results
We compare our model with the following algorithms.

(1) Regression: For each task, to estimate its completion
time, one can resort to a regression algorithm to make the

prediction. We use two classic methods: Support Vector
Regression (SVR) [9] and Bayesian regression method [14].
Given a task, two types of features are input to each method:
(i) word frequency vector in the description of a task; (ii) the
initial expert assigned to the task. 10-fold cross validation
is conducted for both methods. We evaluate SVR with dif-
ferent kernels including a linear kernel, a polynomial kernel,
an RBF kernel and a wavelet kernel. For Bayesian regres-
sion, we consider Bayesian linear regression and Bayesian
logistic regression. Classification using SVM [9] or naive
Bayes classifier [14] are also tested, which turns out to be
worse than the regression methods. Among all the variants
of SVR or Bayesian regression, we always show their best re-
sults obtained. The classification/regression approaches are
employed as straightforward methods for completion time
estimation. They do not attempt to understand the decision
making process of experts, and their results on the sequence
likelihood measure are not available.
(2) Generative models. Miao et al. [12] estimate the prob-
ability of an expert to solve a task and the probability of
transferring a task from an expert to another. Given a task,
[12] recommends a sequence of experts to route the task.
Their goal is to shorten the routing as much as possible,
while our goal is to characterize human routing patterns in
the real network.

6.3.1 Model Accuracy
Table 3 summarizes the performance of all the methods

on step loss measure, MAE, and log likelihood. From the
results of SVR and Bayesian regression, we can see that the
completion time of a task cannot be accurately predicted
based on the straightforward regression methods. In fact,
we observe that in the real datasets, similar tasks, even if
assigned initially to the same expert, are often routed to dif-
ferent experts and resolved with a different completion time.
This implies the resolution of a task is a complicated process
and involves human factors. The estimated completion time
in [12] is usually shorter than the real one as its goal is to
shorten routing sequences. It is not surprising that it incurs
a large step loss and MAE.

Now we test multiple variants of our generative model.
For each variant, we select combinations of different routing
patterns to train a generative model, and test the learned
model under the three measures.

We first examine the performance of TNR-related and
TSR-related routing patterns separately. Then they are
combined together as TNR+TSR. Table 3 clearly shows
both TNR and TSR play a critical role to reduce SL and
MAE, indicating both types of strategies are adopted by
experts in real cases. Our model does capture the deci-
sion making process of experts in a collaborative network.
Our method significantly outperforms the content-focused
regression methods by 75%. Moreover, the MAE between
our estimated completion time and the real one is between
0.07 and 0.15, which shows that our method can be used
to accurately predict the task completion time.

We then experiment if the expertise difference (EX) rout-
ing pattern makes sense. Specifically, we test the model that
combines all the routing patterns except TNRex and TSRex,
denoted as TNR+TSR-EX. The results indicates that with
the EX routing pattern considered, TNR+TSR will better
capture the real decision making process. This result can
be attributed to our observation: an expert is more likely



to transfer a task to some expert whose expertise is neither
too similar nor too different.

DB2
Models Step Loss (%) MAE LL(×104)
TNR 4.11 0.30 -0.28
TSR 4.56 0.29 -0.25

TNR+TSR 1.77 0.08 -0.07

TNR+TSR−EX 3.05 0.14 -0.10

Miao et al. [12] 9.89 0.68 -0.61
SVR 14.78 0.80 N/A

Bayesian regression 13.77 0.84 N/A

WebSphere
Models Step Loss (%) MAE LL(×104)
TNR 4.77 0.40 -0.88
TSR 4.56 0.37 -0.80

TNR+TSR 1.44 0.07 -0.19

TNR+TSR−EX 2.31 0.11 -0.29

Miao et al. [12] 7.55 0.60 -0.81
SVR 18.20 0.71 N/A

Bayesian regression 17.02 0.80 N/A

AIX
Models Step Loss (%) MAE LL(×104)
TNR 4.46 0.37 -0.41
TSR 4.15 0.30 -0.35

TNR+TSR 1.99 0.15 -0.17

TNR+TSR−EX 3.86 0.25 -0.25

Miao et al. [12] 11.10 0.81 -1.21
SVR 15.08 0.77 N/A

Bayesian regression 12.56 0.85 N/A

Table 3: Effectiveness of Routing Models.

6.3.2 Resolution Efficiency
One natural hypothesis is that under the task-specific

routing, a task will be resolved quickly, since TSR directly
takes into account the next expert’s ability to solve the task.
We now verify this hypothesis. Recall that the variational
parameter φi,t in our model TNR+TSR reflects the posterior
mixture weights used by expert ei when transferring task t.
If in φi,t, the sum of the components corresponding to TSR-
related routing patterns is larger than that corresponding
to TNR-related patterns, expert ei is regarded as using T-
SR to transfer task t; otherwise the expert is using TNR.
Therefore, we can roughly divide experts into two groups:
TNR-kind and TSR-kind. After an expert transfers a task,
we count the number of remaining experts needed to resolve
the task. We respectively summarize the distribution of the
remaining expert number when a TSR-kind expert transfers
a task, and that when a TNR-kind expert transfers a task.
Figure 4 shows the results on the DB2 tickets. It clearly
verifies the hypothesis. On DB2 tickets, a ticket will likely
get solved with one more step when an expert favoring T-
SR routes it. However, if routed by a TNR-kind expert, a
ticket might still need 2 or 3 more experts to get resolved.
We obtain an additional implication from Table 3 and Fig-
ure 4, that is, TNR+TSR better captures the expert real
routing behaviors in a collaborative network while routing
based on TSR can lead to more efficient task resolution.
Due to space constraints, we omit the results for AIX and
WebSphere, which are very similar to that of DB2.

6.3.3 Expertise Difference Routing Pattern
In our EX routing pattern, given the expertise of ei and ej ,

we estimate fij , i.e., the general trend of ei sending a task
to ej , based on a log-normal distribution of Δ(ei, ej). The
selection of log-normal is due to the non-negative nature
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Figure 4: Efficiency of TNR vs. TSR.

of Δ(ei, ej) and the asymmetric shape of the distribution
shown in Figure 2. However, one might consider estimating
fij based on a normal distribution, since a normal distribu-
tion also seems to be quite similar to Figure 2:

fij ∝ e
−

[Δ(ei,ej)−μ]2

2σ2 (23)

Table 4 empirically justifies our selection of a log-normal
distribution. (TNR+TSR)# is the result corresponding to
using a normal distribution to estimate fij based on Eqn.
23, which is much worse compared with TNR+TSR.

Models Step Loss (%) MAE LL(×104)
DB2

TNR+TSR 1.77 0.08 -0.07

(TNR+TSR)# 3.54 0.22 -0.18
(TNR+TSR)* 1.90 0.10 -0.08

WebSphere
TNR+TSR 1.44 0.07 -0.19

(TNR+TSR)# 3.67 0.24 -0.55
(TNR+TSR)* 1.59 0.08 0.20

AIX
TNR+TSR 1.99 0.15 -0.17

(TNR+TSR)# 4.01 0.34 -0.38
(TNR+TSR)* 2.12 0.17 -0.19

Table 4: Variants of EX Routing Pattern.

Instead of optimizing μ and σ2 during model solution, we
could pre-estimate μ and σ2 based on the distribution of the
relative expertise difference in the training dataset, as shown
in Figure 2, and keep them fixed during model training. We
denote this setting as (TNR+TSR)*. As discussed in Sec-
tion 3.1, the histogram in Figure 2 is due to the integrated
effects of all the routing patterns, whereas TNR+TSR op-
timizes μ and σ2 with more emphasis on tasks transferred
following the EX pattern, and can further improve the ac-
curacy. Nevertheless, given that the performance does not
differ too much between TNR+TSR and (TNR+TSR)*, in
practice, one might consider saving the trouble of deriving
complicated derivatives over μ and σ2 during model solu-
tion.

6.3.4 Optimizing Collaborations
In the management of real collaborative networks, system

administrators need to optimize the current network, e.g., in
terms of expert training, to improve the efficiency of task ex-
ecution. However, it is very expensive, if not impossible, to
alter the real collaborative network just for hypothesis test-
ing. Currently such decisions are manually made by experi-
enced managers or consultants, without much quantitative
analysis on how the resulting network will perform. Since
our model accurately captures the routing behaviors of ex-
perts, it can naturally serve as a trustable simulation means



for real task routing in the collaborative network. Hypothe-
ses on whether a certain change to the network can improve
the efficiency or not, can be much more easily examined with
the help of our model.
Here we study optimization of the collaborative network,

in terms of training experts to have more efficient routing
patterns. Particularly, we examine two questions: What
kind of routing patterns might bring better resolution effi-
ciency? Which expert(s) should be selected for more train-
ing, given a limited budget? Section 6.3.2 implies if an ex-
pert is more likely to route a task based on TSR, the task
will be resolved more quickly. We now formally verify this
hypothesis. For each expert, we treat TSR and TNR as t-
wo groups of routing patterns, and set the group mixture
weights respectively as (x, 1 − x). When an expert trans-
fers a task, we first randomly select TSR or TNR based on
the group mixture weights, and then select a routing pat-
tern inside the selected group according to their mixture
weights previously learnt in our model TNR+TSR. Based
on Section 5, we estimate the completion time of a task,
and evaluate the task resolution efficiency by the average
CT of all the tasks. We vary x to test the change of the task
resolution efficiency. Only the results in the DB2 tickets are
shown in Figure 5 since similar results on WebSphere and
AIX are observed. We can see that as the mixture weight for
TSR gets closer to 1, the average completion time tends to
become shorter, indicating task resolution becomes more ef-
ficient. Therefore, experts in the network should be trained
to route a task based on TSR.
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When the training budget is limited, which experts should
be trained first to maximize the performance of the entire
network, is an interesting problem. For simplicity, we con-
sider the problem of selecting the best candidate. One can
extend to top-k candidate selection by adopting a greedy
method. Possible methods to recommend an expert include
(1) randomly select one expert from the network, denoted
as Random; (2) select the expert that transfers the most
tasks, denoted as Frequent Transferrer ; (3) select the ex-
pert that is the least efficient: after the expert transfers a
task, the average number of remaining steps to solve a task
is the highest, denoted as Least Efficient ; (4) use our mod-
el to conduct task routing after an expert’s routing pattern
is changed and select the expert that can lead to the most
improvement of efficiency. Efficiency improvement is evalu-
ated by the decrease of the average CT of tasks. Methods
(2)-(4) are executed on a training task set and evaluated
by calculating the efficiency improvement on a testing task
set. Table 5 clearly demonstrates that compared with other
methods, training the expert recommended with the help of
our model, can result in a much more efficiency improve-
ment. This result is expected because through routing a

training set of tasks with our model, we are able to know
which expert’s routing pattern plays a critical role in de-
creasing the average CT of tasks. This study demonstrates
that our model could help conduct hypothesis testing eas-
ily and can provide valuable recommendations to decision
makers during the optimization of a collaborative network.

Methods Efficiency Improvement (%)
Random 0.27

Frequent Transferrer 0.91
Least Efficient 1.21

Recommendation with Our Model 2.75

Table 5: Training Recommendation

7. RELATED WORK
Our work is related to previous studies in three cate-

gories: (1)Collaborative networks; (2)User behavior mod-
eling; (3)Multi-class classification and Markov processes.

Collaborative Networks. Camarinha-Matos et al.[8]
propose general modeling perspectives including structural
and behavioral to design and manage collaborative network-
s. As mentioned in Section 1, Shao et al.[18], Miao et al.[12],
and Zhang et al.[22] propose automated routing algorithms
to resolve a certain task in collaborative networks as fast as
possible. The task resolution problem is also related to the
expert finding problem[3, 17]: Given a keyword query, find
the most knowledgeable persons regarding that query. All
of them aim at proposing algorithms that can speed up the
resolution of a task or a query. Our work differs from these
studies: We are not aimed at building another recommen-
dation algorithm for finding a right resolver. Instead, we try
to uncover the patterns underlying human real routing deci-
sions. Miao et al.[13] study a network model and a routing
model to jointly simulate the structure and the task rout-
ing procedure in a collaborative network, while we directly
infer the routing models in real collaborative networks. A
salient feature of our model is its capability of estimating
the completion time of a real task.

User Behavior Modeling. Information propagation, as
one type of user behaviors, has been widely studied, such as
[10] on influence maximization, [19] on propagation through
e-mail forwarding, [20] on information spreading patterns in
Twitter, and so on. Unlike information propagation from
person to person, the purpose of task routing in a collab-
orative network is to find the resolver for a task instead
of influencing others. Benevenuto et al.[5] study the click-
stream data to reveal key features of user behaviors, such
as how often users connect to a social network and the se-
quence of activities users conduct on a social network site.
Retweeting behaviors of users in Twitter are investigated in
[21]. Zhong et al.[23] leverage the knowledge of user rating
behaviors in multiple social networks to enhance the pre-
dictive performance of user modeling. Different from these
previous studies, in this work, we analyze experts’ routing
behaviors in collaborative networks: Given a task, how an
expert decides where to transfer it and what kind of routing
patterns an expert possesses.

Multi-class Classification and Markov Processes.

In terms of methodology, our model is related to multi-class
classification [16] and Markov processes [4]. When an expert
considers where to route a task, the decision process can be
regarded as a multi-class classification problem. One can po-
tentially build a classifier for each expert, to decide where to



route a task (i.e., the label). It requires effective features and
training algorithms to achieve good performance. Propos-
ing such features for classification is not an easy problem.
Actually, the routing patterns in our model can be regarded
as relevant features for classification. The formalization of
a mixture model gives an intuitive explanation of the deci-
sion making process of an expert. The task routing problem
is also related to a Markov process, particularly, a Markov
chain. States in a Markov chain correspond to experts pro-
cessing a task at each step in our model. Given the current
expert ei, the next expert to access a task is independent
from the experts previous to ei, which can be regarded as
the Markov property. Different from a classic Markov chain,
in our case, the state (i.e., expert) transition probability is
with respect to a specific task and is obtained through a
mixture of multiple routing patterns.

8. CONCLUSION
In this paper, we modeled the decision making and cogni-

tive process of an expert during task routing in collaborative
networks. A routing decision of an expert is formulated as
a result of a generative process based on multiple routing
patterns. We formalized each routing pattern in a prob-
abilistic framework, and modeled experts’ routing decision
making through a generative model. Our analytical model
has been verified that it not only explains the real routing
sequence of a task very well, but also accurately predicts
a task’s completion time in the current collaborative net-
work. In comparison with all the alternatives, our method
improves the performance by more than 75% under three
different quality measures. We have also demonstrated that
our model can provide guidance on optimizing the perfor-
mance of collaborative networks.
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