
MIDAS: Finding the Right Web Sources
to Fill Knowledge Gaps

Xiaolan Wang Xin Luna Dong Yang Li Alexandra Meliou

University of Massachusetts Amazon Inc. Google Inc.
Amherst, MA, USA Seattle, WA, USA Mountain View, CA, USA

{xlwang,ameli}@cs.umass.edu lunadong@amazon.com ngli@google.com

Abstract—Knowledge bases, massive collections of facts (RDF
triples) on diverse topics, support vital modern applications.
However, existing knowledge bases contain very little data
compared to the wealth of information on the Web. This is
because the industry standard in knowledge base creation and
augmentation suffers from a serious bottleneck: they rely on
domain experts to identify appropriate web sources to extract
data from. Efforts to fully automate knowledge extraction have
failed to improve this standard: these automated systems are
able to retrieve much more data and from a broader range of
sources, but they suffer from very low precision and recall. As
a result, these large-scale extractions remain unexploited.

In this paper, we present MIDAS, a system that harnesses the
results of automated knowledge extraction pipelines to repair the
bottleneck in industrial knowledge creation and augmentation
processes. MIDAS automates the suggestion of good-quality web
sources and describes what to extract with respect to augmenting
an existing knowledge base. We make three major contributions.
First, we introduce a novel concept, web source slices, to describe
the contents of a web source. Second, we define a profit function
to quantify the value of a web source slice with respect to
augmenting an existing knowledge base. Third, we develop
effective and highly-scalable algorithms to derive high-profit web
source slices. We demonstrate that MIDAS produces high-profit
results and outperforms the baselines significantly on both real-
world and synthetic datasets.

I. INTRODUCTION

Knowledge bases support a wide range of applications and
enhance search results for multiple major search engines, such
as Google and Bing [2]. The coverage and correctness of
knowledge bases are crucial for the applications that use them,
and for the quality of the user experience. However, there
exists a gap between facts on the Web and in knowledge
bases: compared to the wealth of information on the Web,
most knowledge bases are largely incomplete, with many facts
missing. For example, one of the largest knowledge bases,
Freebase [1, 8], does not provide sufficient facts for different
types of cocktails such as the ingredients of Margarita. Yet,
such information is explicitly profiled and described by many
web sources, such as Wikipedia (https://en.wikipedia.org).

Industry standard. Industry typically follows a semi-
automated knowledge extraction process to create or augment
a knowledge base with facts that are new to an existing knowl-
edge base (or new facts) from the Web. This process (Figure 1a)
first relies on domain experts to select web sources; it then
uses crowdsourcing to annotate a fraction of entities and facts
and treats them as the training data; finally, it applies wrapper

induction [20, 21] and learns XPath patterns to extract facts
from the selected web sources. Since source selection and train-
ing data preparation are carefully curated, this process achieves
high precision and recall with respect to each selected web
source. However, it can only produce a small volume of facts
overall and cannot scale, as the source-selection step is a severe
bottleneck, relying on manual curation by domain experts.

Automated process. To conquer the scalability limitation in
the industry standard, automated knowledge extraction [14, 30]
attempts to extract facts with little or no human intervention.
Instead of manually selecting a small set of web sources,
automated extraction (Figure 1b) often takes a wide variety
of web sources, e.g., ClueWeb09 [11], as input and uses facts
in an existing knowledge base, or a small portion of labeled
input web sources, as training data. This automated extraction
process is able to produce a vast number of facts. However,
because of the limited training data (per source), especially
for uncommon facts, e.g., the ingredients of Margarita,
this process suffers from low accuracy. The TAC-KBP
competition showed that automated processes [5, 13, 33, 34]
can hardly achieve above 0.3 recall, leaving a lot of the
wealth of web information unexploited. Due to this limitation,
such automatically extracted facts are often abandoned for
knowledge bases in industrial production.

In this paper, we propose MIDAS1, a system that harnesses
the correct extractions2 of the automated process to
automatically identify suitable web sources and repair the
bottleneck in the industry standard. The core insight of MIDAS
is that the automatically extracted facts, even though they
may not be of high overall accuracy and coverage, give clues
about which web sources contain a large amount of valuable
information, allow for easy annotation, and are worthwhile
for extraction. We demonstrate this through an example.
Example 1. Figure 2 shows a snapshot of high-confidence facts
(subject, predicate, object) extracted from 5 web pages under
web domain http:// space.skyrocket.de. Automated extraction
systems may not be able to obtain high precision and recall
in extracting facts from this website due to lack of effective
training data. However, the few correct extracted facts give

1Our system is named after King Midas, known in Greek mythology for
his ability to turn what he touched into gold.

2We refer to correct facts as facts that are believed as true. In practice,
we only consider facts with confidence value above 0.7 as labeled by the
automated extraction system.

https://en.wikipedia.org
http://space.skyrocket.de

A small set of web
sources selected by

domain experts	

Labeled
facts

Crowdsourcing Wrapper
induction

<Xpath	pa(ern>	
<Xpath	pa(ern>	
<Xpath	pa(ern>	
<Xpath	pa(ern>	
<Xpath	pa(ern>	
<Xpath	pa(ern>	
<Xpath	pa(ern>	

…	…		

Learned
Xpath

patterns Extract facts
from selected
web sources

Extracted facts:
-  Low volume
-  High accuracy�

per source

A major bottleneck

A wide variety of
web sources crawled

from the Web
Extract facts

from web
sources

Trained
extraction

system
Extracted facts:
-  High volume
-  Low accuracy �

per source

(a) Industry Standard

(b) Automated Process (c) MIDAS

Discarded	

A wide variety of
web sources crawled

from the Web

Automatically
discovered

web sources slices	

Extracted facts:
-  High volume
-  Low accuracy �

per source

MIDAS

Fig. 1: Two knowledge extraction procedures and MIDAS. The output of the automated process (b) is often discarded in
production due to low accuracy. MIDAS further exploits these automated process by using the automatically-extracted facts to
resolve the bottleneck of the industry standard.

ID subject predicate object new? web source

t1 Project Mercury category space_program N http://space.skyrocket.de/doc_sat/mercury-history.htm
t2 Project Mercury started 1959 N http://space.skyrocket.de/doc_sat/mercury-history.htm
t3 Project Mercury sponsor NASA N http://space.skyrocket.de/doc_sat/mercury-history.htm
t4 Project Gemini category space_program N http://space.skyrocket.de/doc_sat/gemini-history.htm
t5 Project Gemini sponsor NASA N http://space.skyrocket.de/doc_sat/gemini-history.htm
t6 Atlas category rocket_family Y http://space.skyrocket.de/doc_lau_fam/atlas.htm
t7 Atlas sponsor NASA Y http://space.skyrocket.de/doc_lau_fam/atlas.htm
t8 Atlas started 1957 Y http://space.skyrocket.de/doc_lau_fam/atlas.htm
t9 Apollo program category space_program N http://space.skyrocket.de/doc_sat/apollo-history.htm
t10 Apollo program sponsor NASA N http://space.skyrocket.de/doc_sat/apollo-history.htm
t11 Castor-4 category rocket_family Y http://space.skyrocket.de/doc_lau_fam/castor-4.htm
t12 Castor-4 started 1971 Y http://space.skyrocket.de/doc_lau_fam/castor-4.htm
t13 Castor-4 sponsor NASA Y http://space.skyrocket.de/doc_lau_fam/castor-4.htm

Fig. 2: Facts that are correctly extracted from http://space.skyrocket.de. We compare the extracted facts with Freebase and mark
the facts that are absent from Freebase as “Y” in the “new” column.

important clues on what one could extract from this site.
For each fact, the subject indicates an entity; the predicate

and object values further describe properties associated with
the entity. For example, fact t1 specifies that the category
property of the entity Project Mercury is space program. Entities
can form groups based on their common properties. For
example, entity “Project Mercury” and entity “Project Gemini”
are both “space programs that are sponsored by NASA”.

The facts labeled “Y” in the “new?” column are absent from
Freebase. All of these new facts are under the same sub-domain
and are all “rocket families sponsored by the NASA.” This ob-
servation provides a critical insight: one can augment Freebase
by extracting facts pertaining to “rocket families sponsored
by NASA” from http:// space.skyrocket.de/doc_lau_fam.

Example 1 shows that one can abstract the contents of a web
source through extracted facts: A web source often includes
facts of multiple groups of homogeneous entities. Each group of
entities forms a particular subset of content in the web source,
which we call a web source slice (or slice). The common
properties shared by the group of entities not only define, but
also describe the slice of facts. For example, it is easy to
tell that a slice describes “rocket families sponsored by NASA”
through its common properties, “category = rocket family” and

“sponsor = NASA”. Moreover, entities in a single web source
slice often belong to the same type, e.g., “rocket families

sponsored by NASA”, and thus share similar predicates. The
limited number of predicates in a web source slice simplifies
annotation. Our objective is to discover web source slices that
(1) contain a sufficient number of facts that are absent from the
knowledge base we wish to augment, and (2) their extraction
effort does not outweigh the benefit.

However, evaluating and quantifying the suitability of a
web source slice with respect to these two desired properties
is not straightforward. In addition, the number of slices in a
single web source often grows exponentially with the number
of facts, posing a significant scalability challenge. This
challenge is amplified by the massive number of sources on
the Web, in various genres, languages, and domains. Even
a single web domain may contain an extensive amount of
knowledge. For example, as of July 2018, there are more than
45 million entries in Wikipedia [3].

MIDAS addresses these challenges through (1) efficient and
scalable algorithms for producing web source slices, and (2) an
effective profit function for measuring the utility of slices. We
make the following contributions.
• We formalize the problem of identifying and describing

“good” web sources as an optimization problem. Given the
automatically extracted facts from a web source, we first
characterize its contents through web source slices, and then
measure the utility of a web source slice through a profit

http://space.skyrocket.de
http://space.skyrocket.de/doc_lau_fam

Slice description Web source
Ratio of new facts

in the slice
Ratio of new facts
in the web source

Education organizations http://www.schoolmap.org/school/ 67% 15%
US golf courses https://www.golfadvisor.com/course-directory/2-usa/ 77% 13%
Biology facts http://www.marinespecies.org 75% 27%
Board games http://boardgaming.com/games/board-games/ 83% 20%
Skyscraper architectures http://skyscrapercenter.com/building 80% 10%
Indian politicians http://www.archive.india.gov.in 71% 18%

Fig. 3: Selected top returns (slices) from MIDAS targeting the augmentation of Freebase. MIDAS derived slides using facts
extracted from KnowledgeVault, a real-world, large-scale, automated knowledge extraction pipeline that operates on billions of
web pages. New facts refer to extracted facts that are absent from Freebase.

function. Our goal is to find high-profit web source slices;
a high profit indicates that the corresponding source can
be easily annotated for the topic specified by the slice, and
contains a large number of new facts (Section II).

• We develop algorithms to generate high-profit web source
slices: We first design an algorithm, MIDASalg, that
identifies slices of facts for a single web source; we then
propose a scalable framework that efficiently produces slices
of facts from multiple web sources (Section III).

• We perform a thorough evaluation and compare the trade-off
among the proposed algorithms and multiple baseline
approaches, on both real-world and synthetic data sets
(Section IV). In particular, we demonstrate that MIDAS is
able to find interesting web sources for knowledge extraction
in an efficient and scalable manner.

Example 2. MIDAS is able to identify and customize “good”
web sources for an existing knowledge base. We demonstrate a
very small subset of the top returns in Figure 3. In each selected
web source, along with the web source URL, we further narrow
down the scope of interest to a certain web source slice. The
web source slices provide new and valuable information for
augmenting the existing knowledge base; in addition, many of
these web sources contain semi-structured data with respect
to entities in the reported web source slice. Therefore, they are
easy for annotation. We will revisit these results in Section IV.

II. PROBLEM DEFINITION

The goal of MIDAS is to improve the industry standard of
knowledge-base creation and augmentation by repairing its
bottleneck of manual web-source selection. MIDAS achieves
this by harnessing extraction data that has remained largely
unexploited — that of automated extraction processes. Our
system uses the automatically extracted facts to derive web
source slices, a formalization of the content of a web source,
and selects those slices that are the best candidates for
augmenting a given knowledge base (or creating a knowledge
base when the given one is empty). In this section, we first
formally define web source slices in Section II-A; we then use
these abstractions to formalize the problem of slice discovery
for knowledge base augmentation in Section II-B.

A. Web Source Slice

Web source. URL hierarchies offer access to web sources at
different granularities, such as a web domain (https://www.cdc.
gov), a sub-domain (https://www.cdc.gov/niosh), or a web page

(https://www.cdc.gov/niosh/ipcsneng/neng0363.html). Web do-
mains often use URL hierarchies to classify their contents.
For example, the web domain https://www.golfadvisor.com
classifies facts for “golf course in Jamaica” under the finer-
grained URL https://www.golfadvisor.com/course-directory/
8545-jamaica. The URL hierarchies in these web domains di-
vide their contents into smaller, coherent subsets, providing op-
portunities to reduce unnecessary extraction effort. For example,
the web domain https://www.cdc.gov requires significant extrac-
tion effort as its contents are varied and spread across too many
categories; the sub-domain https://www.cdc.gov/niosh/ipcsneng
represents lower extraction effort, because its content focuses on
“international chemical safety information”. MIDAS considers
web sources at all granularity levels of the URL hierarchy.

Contents of a web source. Facts extracted from a web source
typically correspond to many different entities. However, they
can share common properties: for example, the entities “Atlas”
and “Castor-4” (Figure 2) have the common property of being
rocket families sponsored by NASA. We abstract and formalize
the content represented by a group of entities as a web source
slice and define it by the entities’ common properties. The
abstraction of web source slices achieves two goals: (1) it
offers a representation of the content of a web source that
is easily understandable by humans, and (2) it allows for the
efficient retrieval of all facts relevant to that content.

As described in Example 1, an extracted fact corresponds to
an entity and describes properties of that entity. Web source
slices, in turn, are defined over a group of entities with common
properties. To facilitate this exposition, we organize facts of a
web source W in a fact table FW (Figure 4). A row in the fact
table contains facts that correspond to the same entity (denoted
by the subject).
Definition 3 (Fact table). Let TW = {(s, p, o)} be a set of
facts, in the form of (subject, predicate, object), extracted from
a web source W , and n be the number of distinct predicates
in TW (n = |{t.p | t ∈ TW }|). We define the fact table
FW (subject, pred1, . . . , predn), which has a primary key
(subject) and one attribute for each of the n distinct predicates.
Each fact t ∈ TW maps to a single, non-empty cell in FW :

∀t ∈ TW , t.o ∈ Πt.pσsubject=t.s(FW)

where Π and σ are the Projection and Selection operators
in relational algebra.

https://www.cdc.gov
https://www.cdc.gov
https://www.cdc.gov/niosh
https://www.cdc.gov/niosh/ipcsneng/neng0363.html
https://www.golfadvisor.com
https://www.golfadvisor.com/course-directory/8545-jamaica
https://www.golfadvisor.com/course-directory/8545-jamaica
https://www.cdc.gov
https://www.cdc.gov/niosh/ipcsneng

Note that we leverage existing techniques [15, 25] to identify
correct facts in TW and reduce the noises in web sources; In
addition, the above and later definitions are in slight abuse
of the relational algebra notation, as FW is not generally in
first normal form: instead of a single value, cells in FW may
contain a set of values, corresponding to facts with the same
subject and predicate. For ease of exposition, we use single
values in our examples. We now define properties and web
source slices over the fact table FW .
Definition 4 (Property). A property c = (pred, v) is a pair
derived from a fact table FW , such that pred is an attribute
in FW and v ∈ Πpred(FW). We further denote with CW the
set of all properties in a web source W :

CW = ∪pred∈FW .pred ∪v∈Πpred(FW) (pred, v)

Figure 4 lists all the properties derived from the fact
table of our running example. MIDAS considers properties
where the value is strictly derived from the domain of pred:
v ∈ Πpred(FW). Our method can be easily extended to more
general properties, e.g., “year > 2000”; however, we decided
against this generalization, as it increases the complexity of the
algorithms significantly, without observable improvement in
the results. In addition, MIDAS does not consider properties on
the subject attribute since in most real-word datasets subjects
are typically identification numbers.
Definition 5 (Web Source Slice). Given a set of facts TW
extracted from web source W , the corresponding fact table
FW , and the collection of properties CW , a web source slice
(or slice), denoted by S(W) (or S for short), is a triplet
S(W) = (C,Π,Π∗), where,
• C = {c1, ..., ck} ⊆ CW is a set of properties;
• Π = Πsubjectσc1∧...∧ck(FW) is a non-empty set of entities,

each of which includes all of the properties in C;
• Π∗ = {(s, p, o)|(s, p, o) ∈ TW , s ∈ Π} is a non-empty set

of facts that are associated with entities in Π.
Example 6. Figure 4 demonstrates the fact table (upper-left),
properties (upper-right), and some slices (bottom) derived
from the facts of Figure 2. For example, slice S6 on property
{c6} represents facts for projects sponsored by NASA; slice
S4 on properties {c1, c6} represents facts for space programs
sponsored by NASA.
Canonical slice. Different slices may correspond to the same
set of entities. For example, in Figure 4, the slice defined by
{c5, c6} corresponds to entity e5, the same as slice S3, but it
has a different semantic interpretation: projects sponsored by
NASA and started in 1957. Based on the extracted knowledge,
it is impossible to tell which slice is more precise; reporting and
exploring all of them introduces redundancy to the results and
also significantly increases the overall problem complexity. In
MIDAS, we choose to report canonical slices: among all slices
that correspond to the same set of entities and facts, the one
with the maximum number of properties is a canonical slice.
Definition 7. A slice S(W) = (C,Π,Π∗) is a canonical slice
if there exists no S′(W) = (C ′,Π,Π∗) such that |C ′| ≥ |C|.

Focusing on canonical slices does not sacrifice generality.
The canonical slice is always unique, and one can infer the

unreported slices from the canonical slices by taking any
subset of a canonical slice’s properties and validating the
corresponding entities. All six slices in Figure 4 are canonical
slices that select at least one fact.

B. The Slice Discovery Problem

Definition 8 (Problem Definition). Let E be an existing
knowledge base,W = {W1, ...} be a collection of web sources,
TW be the facts extracted from web source W ∈ W , and f(S)
be an objective function evaluating the profit of a set of slices on
the given existing knowledge base E . The web source suggestion
problem finds a list of web source slices, S = {S1, ...}, such
that the objective function f(S) is maximized.

Inspired by solutions in [17, 29], we quantify the value
of a set of slices as the profit (i.e., gain−cost) of using the
set of slices to augment an existing knowledge base. We
measure the gain as a function of the number of unique
new facts presented in the slices, showing the potential
benefit of these facts in downstream applications. We estimate
the cost based on common knowledge-base augmentation
procedures [14, 24, 30], which contain three steps: crawling the
web source to extract the facts, de-duplicating facts that already
exist in the knowledge base, and validating the correctness
of the newly-added facts. In our implementation, we assume
that the gain and cost are linear with respect to the number of
(new) facts in all slices. This assumption is not inherent to our
methodology, and one can adjust the gain and cost functions.
Definition 9. Let S be the set of slices derived from web source
W and let E be a knowledge base. We compute the gain and
the cost of S with respect to E as G(S) = | ∪S∈S S \ E| and
C(S) = Ccrawl(S) + Cde-dup(S) + Cvalidate(S), respectively.
The profit of S is the difference:

f(S) = G(S)− C(S)

In this paper, we measure the crawling cost as Ccrawl(S) =
|S| · fp +

∑
W∈W fc · |TW |, which includes a unit cost fp

for training and an extra cost for crawling; de-duplication
cost as Cde-dup(S) = fd · |

⋃
S∈S S|, which is proportional

to the number of facts in the slices; and validation cost as
Cvalidate(S) = fv · | ∪S∈S S \ E|, which is proportional to the
number of new facts in the slices. For our experiments, we
use the default values fp = 10, fc = 0.001, fd = 0.01, and
fv = 0.1 (we switch to fp = 1 for the running examples in the
paper). Intuitively, de-duplication is more costly than crawling,
and validation is proportionally the most expensive operation
except training. MIDAS uses this profit function as the objective
function in Definition 8 to identify the set of web source slices
that are best-suited for augmenting a given knowledge base.
Example 10. In Figure 4, there are three sets of slices,
{S2, S3}, {S5}, and {S6}, that cover all the new facts in the
web source. Among these slices, reporting S5 is intuitively the
most effective option, since S5 selects all new facts in the web
source and covers zero existing one. We reflect this intuition in
our profit function (f(S)): slice {S5} has the same gain, but
lower de-duplication cost (6fd vs. 13fd), compared to slice
{S6} as it contains fewer facts; slice {S5} and slices {S2, S3}

Fact table

EID subject category sponsor started

e1 Project Mercury space_program {NASA} {1959}
e2 Project Gemini space_program {NASA} ∅
e3 Atlas rocket_family {NASA} {1957}
e4 Apollo program space_program {NASA} ∅
e5 Castor-4 rocket_family {NASA} {1971}

Properties

CID Property

c1 (category, space_program)
c2 (category, rocket_family)
c3 (started, 1959)
c4 (started, 1957)
c5 (started, 1971)
c6 (sponsor, NASA)

Web source slices

SID Properties Entities Facts Description

S1 {c1, c3, c6} {e1} {t1, t2, t3} space programs sponsored by NASA and started in 1959
S2 {c2, c4, c6} {e3} {t6, t7, t8} rocket families sponsored by NASA and started in 1957
S3 {c2, c5, c6} {e5} {t11, t12, t13} rocket families sponsored by NASA and started in 1971
S4 {c1, c6} {e1, e2, e4} {t1–t5, t9, t10} space programs sponsored by NASA
S5 {c2, c6} {e3, e5} {t6–t8, t11–t13} rocket families sponsored by NASA
S6 {c6} {e1, e2, e3, e4, e5} {t1–t5,t6–t8, t9, t10,t11–t13} any projects sponsored by NASA

Fig. 4: Fact table, properties, and example slices derived from facts in Figure 2. The facts that are absent from Freebase
(t6, t7, t8, t11, t12, and t13) are highlighted in green.

also has the same gain, but {S5} has lower crawling cost (fp vs.
2fp) as it avoids the unit cost for training an additional slice.

III. DERIVING WEB SOURCE SLICES

The objective of the slice discovery problem is to identify the
collection of web source slices with the maximum total profit.
Through a reduction from the set cover problem, we can show
that this optimization problem is NP-complete. In addition,
because it is a Polynomial Programming problem with a non-
linear objective function, the problem is also APX-complete,
which means that no constant-factor polynomial approximation
algorithm exists if P 6= NP .
Theorem 11 (Complexity of slice discovery). The optimal slice
discovery problem is NP-complete and APX-complete [6].

In this section, we first present an algorithm, MIDASalg , that
solves a simpler problem: identifying the good slices in a single
web source (Section III-A). We then extend the MIDASalg
algorithm to the general form of the slice discovery problem
and propose a highly-parallelizable framework, MIDAS, that
detects good slices from multiple web sources (Section III-B).

A. Deriving Slices from a Single Source

The problem of identifying high-profit slices in a single web-
source is in itself challenging. As per Definition 5, given a web
source and its extracted facts, any combination of properties,
which are derived from the facts, may form a web source slice.
Therefore, the number of slices in a single web source can be
exponential in the number of extracted facts in the web source.
This factor renders most set cover algorithms, as well as existing
source selection algorithms [17, 29], inefficient and unsuitable
for solving the slice discovery problem since they often need
to perform multiple iterations over all slices in a web source.

Our approach, MIDASalg, avoids this costly exploration by
exploiting the natural hierarchical structure of the slices, formed
by the properties in their definitions. MIDASalg works in two
steps: (1) it first constructs slices in a web source in a bottom-up
fashion, while pruning slices that are not canonical (Defini-
tion II-A) or that lead to lower profit; (2) it then traverses the re-

maining slices top-down to prune slices that overlap with other
higher-quality ones. Through the first step, MIDASalg explores
and evaluates slices in a web source with minimal effort as it
avoids property combinations that fail to match any extracted
facts. The second step leverages the trimmed slice hierarchy and
is able to find a set of high-quality slices through a linear scan.

1) Step 1: Slice hierarchy construction: A key to MIDASalg’s
efficiency is that it constructs slices only as needed, building
a slice hierarchy in a bottom-up fashion, and smartly pruning
slices during construction. The hierarchy is implied by the prop-
erties of slices. For example, slice S4 (Figure 4) has a subset
of the properties of slice S1, and thus corresponds to a superset
of entities compared to S1. As a result, S4 is more general
and thus an ancestor to S1 in the slice hierarchy. MIDASalg
first generates slices at the finest granularity (least general)
and then iteratively generates, evaluates, and potentially prunes
slices in the coarser levels.

Generating initial slices. MIDASalg creates a set of initial
slices from the entities in the fact table FW . Each entity e
is associated with the facts (s, p, o) ∈ TW that correspond
to that entity (s = e). Each such fact maps to one property
(p, o). Thus, the set of all properties that relate to entity e are:
Ce = {(p, o) | (s, p, o) ∈ TW , s = e}.

For each entity e, MIDASalg creates one slice for each
combination of properties in Ce, such that each property is on
a different predicate; if e has a single value for each predicate,
there will be a single slice created for e. The algorithm assigns
a level to each slice, corresponding to the number of properties
that define the slice. These initial slices contain a maximal
number of properties and are, thus, canonical slices (Defini-
tion II-A). As shown in Figure 5a, MIDASalg creates three
slices, S1, S2, and S3, at level 3 from entities e1, e3, and e5,
respectively, and one slice, S4, at level 2 from entities e2 and e4.

Bottom-up hierarchy construction and pruning. Starting
with the initial slices, MIDASalg constructs and prunes the slice
hierarchy in a bottom-up fashion. At each level, MIDASalg
follows three steps: (1) it constructs the parent slices for each

S4:

LB:?;
Cur:?

{c1, c6}

S2:
LB:?;
Cur: ?

{c2, c4, c6} S3:
LB:?;
Cur: ?

{c2, c5, c6}S1:
LB:?;
Cur:?

{c1, c3, c6}

(a) Initial slices formed by entities.

S1:
LB:0;
Cur:-1.013

S4:

LB:?;
Cur:?

S5:

LB:?;
Cur:?

S2:
LB:1.657;
Cur: 1.657

S3:
LB: 1.657;
Cur: 1.657

 {c1, c3}
{c1, c6}

 {c3, c6} {c4, c6} {c2, c4}

{c2, c6}
{c2, c5} {c5, c6}

{c1, c3, c6} {c2, c4, c6} {c2, c5, c6}

 {c1} {c2} {c3} {c4} {c5} {c6}

(b) Pruning non-canonical slices (Level 2).

S1:
LB:0;
Cur:-1.013

S4:
LB:0;
Cur:-1.083

S2:

S5:
LB:4.327;
Cur:4.327

LB:1.657;
Cur: 1.657

{c2, c4, c6}

{c1, c6} {c2, c6}

 {c1} {c2} {c3} {c4} {c5} {c6}

S2:
LB:1.657;
Cur: 1.657

S3:
LB: 1.657;
Cur: 1.657

Level	3	

Level	2	

Level	1	

{c1, c3, c6} {c2, c4, c6} {c2, c5, c6}

(c) Pruning low-profit slices (Level 2).

Fig. 5: Constructing the slice hierarchy with MIDASalg for the facts of Figure 2. LB is short for the profit lower bound (fLB(S)),
and Cur is short for current profit (f(S)). The initial slices, identified by extracted entities, are highlighted in light gray, and
identified canonical slices in each step are depicted with solid lines. If the current profit of a slice is lower than the lower
bound, we highlight it in red; these slices are low-profit and are eliminated during the pruning stage. The remaining, desired
slices are depicted in bold black lines, and have current profit greater or equal to the lower bound.

slice in the current level; (2) for each new slice, it evaluates
whether it is canonical and prunes it if it is not; (3) if the slice
is canonical, it evaluates its profit and prunes the slice if the
profit is low compared to other available slices. Slices pruned
during construction are marked as invalid:
(1) Constructing parent slices. At each level, MIDASalg
constructs the next level of the slice hierarchy by generating
the parent slices for each slice in the current level. To generate
the parent slices for a slice, MIDASalg uses a process similar
to that of building the candidate itemset lattice structure in
the Apriori algorithm [4]. Given a slice S = σC(FW) with
properties C = {c1, ..., ck}, MIDASalg generates k parent slices
for S, by removing one property from C at a time. For example,
as shown in Figure 5b, MIDASalg generates three parent slices
for slice S2: {c2, c4}, {c2, c6}, and {c4, c6}. For each slice we
record its children slices; this will be important for removing
non-canonical slices safely, as we proceed to discuss.
(2) Pruning non-canonical slices. MIDAS only reports canoni-
cal slices, which are slices with a maximal number of properties
(Section II-A). To identify the canonical slices efficiently,
MIDASalg relies on the following property.
Proposition 12. A slice S is canonical if and only if it satisfies
one of the following two conditions:

(1) slice S is an initial slice defined from an entity; or
(2) slice S has at least two children slices that are canonical.
This proposition, proved by contradiction, formalizes

a critical insight: the determination of whether a slice is
canonical relies on two easily verifiable conditions. For
example, at level 2 in Figure 5b, slices S4 and S5 are
canonical slices (depicted with solid lines) because S4 is one
of the initial slices, defined by entities e2 and e4, and S5 has
two canonical children, S2 and S3.

In order to record children slices correctly after pruning,
MIDASalg works at two levels of the hierarchy at a time: it
constructs the parent slices at level l− 1 before pruning slices
at level l. For example, in Figure 5, MIDASalg has constructed
the parent slices at level 1, as it is pruning slices at level 2. The
removal of a non-canonical slice S, also updates the children
list of the slice’s parent, Sp. Each child Sc of the removed slice
S becomes a child of Sp if Sc is not already a descendant of Sp

through another node. In Figures 5b–5c, MIDASalg prunes the
non-canonical slice ({c1, c3}, ..., ...) and makes its child slice
S1 a direct child of the parent slice ({c3}, ..., ...). However,
it does not make S1 a child of ({c1}, ..., ...) since S1 is a
descendant of ({c1}, ..., ...) through slice node S4.
(3) Pruning low-profit slices. For the remaining canonical
slices, MIDASalg calculates the statistics to identify and
prune slices that may lead to lower profit. This pruning step
significantly reduces the number of slices that the traversal
(Section III-A2) will need to examine. The pruning logic
follows a simple heuristic: the ancestors of a slice are likely
to be low-profit if the slice’s profit is either negative or lower
than that of its descendants.

For a slice S, we maintain a set of slices from the subtree
of S, denoted by SLB(S). This set is selected to provide a
lower bound of the (maximum) profit that can be achieved by
the subtree rooted at S; we denote the corresponding profit
as fLB(S). fLB(S) is always non-negative, as the lowest
profit, achieved by SLB(S) = ∅, is zero. Let CS be the set of
children of slice S. We compute fLB(S) and update SLB(S)
by comparing the profit of S itself with the profit of the slices
in the lower bound sets (SLB) of S’s children:

fLB(S) = max{f({S}), f(∪Sc∈CS ,fLB(Sc)>0SLB(Sc))}

MIDASalg marks a slice S as low-profit if its current profit
is negative or if it is lower than the total profit that can be
obtained from the lower bound slices in its subtree (fLB(S)).
This is because reporting SLB(S) instead of {S} is more likely
to lead to a higher profit.

Note that slices in SLB(S) could be the descendants of
slices in CS . In addition, even if a child slice is pruned, its
parent slice may still have the maximal profit in the subtree.
This is because the parent slice may have lower cost than the
children slices: for example, if CS is the set of children of slice
S, the training cost of children slices (|CS | · fp) compared to
the parent (fp) can often cause the latter to have higher profit.
Example 13. In Figure 5b there are two canonical slices,
S4 and S5, remaining at level 2. To prune low-profit slices,
MIDASalg first calculates the statistics of these two slices
and then prunes S4 since its profit is negative. After pruning

Algorithm 1 MIDASalg: the top-down traversal

Require: E , FW , H, L
E : existing knowledge base
FW : fact table of the web source W
H: constructed hierarchy
L: number of levels in the hierarchy
S.valid: slice S is not pruned during construction
S.covered: slice S is not covered by the result set S

1: S ← ∅
2: for l from 1 to L do
3: for S in H[l] do
4: if S.valid & !S.covered & f(S ∪ S) > f(S) then
5: S ← S ∪ S
6: S.covered = true
7: if S.covered then
8: for Sc in CS do
9: Sc.covered = true

10: Return S

non-canonical and low-profit slices (Figure 5c), MIDASalg
significantly reduces the number of slices at level 2 from 8 to 1.

Constructing the hierarchy of slices is related to agglomera-
tive clustering [23, 31], which builds the hierarchy of clusters
by merging two clusters that are most similar at each iteration.
However, MIDASalg is much more efficient than agglomerative
clustering, as we show in our experiments (Section IV).

2) Step 2: Top-down hierarchy traversal: The hierarchy
construction is effective at pruning a large portion of slices
in advance, reducing the number of slices we need to consider
by several orders of magnitude (Section IV). However,
redundancies, or heavily overlapped slices, may still be
present in the trimmed slice hierarchy, especially for slices
that belong to the same subtree. The second step of MIDASalg
traverses the hierarchy top-down to select a final set of slices
(Algorithm 1). In this top-down traversal, MIDASalg prioritizes
valid (unpruned) slices at higher levels of the hierarchy, since
they are more likely to produce higher profit and cover a
larger number of facts than their descendants. We initialize
unpruned slices as valid (S.valid =true) but not covered in
the result set (S.covered =false).

Given the existing knowledge base E , the fact table FW of
the web source W , the hierarchy H constructed from previous
steps, and the total number of levels L of the hierarchy, the
algorithm initializes the result set S as empty (Line 1); It
then traverses the hierarchy level-by-level, from root to leaves,
to identify slices that are not covered by the result set S
and improve the total profit, and add them into the result set
(Lines 2∼5); Meanwhile, when MIDASalg selects a slice, it
excludes all its descendants and stops the traversal of that
subtree by marking the binary variable S.covered as true for
its descendants iteratively through the traversal (Lines 6∼9).
Example 14. Figure 5c shows a slice hierarchy after construc-
tion and pruning. Among the remaining slices (S2, S3, S5),
MIDASalg first includes slice S5 since it is the highest-level
slice in the hierarchy that improves the total profit. MIDASalg
labels S2 and S3 as covered, since they are children of S5; the
traversal concludes and MIDASalg reports {S5} as the result.

Proposition 15. MIDASalg has O(m|P|) time complexity,
where m is the maximum number of distinct (subject,
predicate) pairs, and |P| is the number of distinct predicates
in the web source W .

According to Theorem 11, the optimal slice discovery
problem is APX-complete. Therefore, it is impossible to derive
a polynomial time algorithm with constant-factor approximation
guarantees for this problem. However, as we demonstrate in our
evaluation, MIDASalg is efficient and effective at identifying
multiple slices for a single web source in practice (Section IV).

B. Multiple Slices from Multiple Sources

To detect slices from a large web source corpus, a naïve
approach is to apply MIDASalg on every web source. However,
this approach leads to low efficiency and low accuracy, as it
ignores the hierarchical relationship among web sources from
the same web domain, e.g., http://space.skyrocket.de/doc_sat/
apollo-history.htm is a child of http://space.skyrocket.de/doc_
sat in the hierarchy. The naïve approach repeats computation
on the same set of facts from multiple web sources and returns
redundant results. For example, given the facts and web sources
in Figure 1, the naïve approach will perform MIDASalg on 7
web sources, including 5 web pages, 2 sub-domains, and 1 web
domain, and report three slices, “rocket families sponsored by
NASA” on web source http://space.skyrocket.de/doc_lau_fam,
“rocket families sponsored by NASA and started in 1957” on
web source http://space.skyrocket.de/.../atlas.htm, and “rocket
families sponsored by NASA and started in 1971” on web
source http://space.skyrocket.de/.../castor-4.htm. Even though
these three slices achieve the highest profit in their respective
web sources, they are as a set redundant and lead to a reduction
in the total profit: since the web sources are in the same
domain, reporting the latter two slices is redundant and hurts
the total profit since the first one already covers all their facts.

In this section, we introduce a highly-parallelizable frame-
work that relies on the natural hierarchy of web sources
and explores web source slices in an efficient manner. This
framework starts from the finest grained web sources and reuses
the derived slices to form the initial slices while processing
their parent web source. This framework not only improves the
execution efficiency, but also avoids reporting redundant slices
over different web sources in the same web domain. Figure 6
shows the high-level architecture of the MIDAS framework;
we highlight its core components here.
Sharding. At each iteration, we take a finer-grained child web
source and a list of slices as the input. We generate a one-
level-coarser web domain as parent web source (if any) and
use it as the key to shard the inputs.
Detecting. After sharding, MIDAS first collects a set of slices
for each coarser web source (current) from its finer-grained
children, then uses the collected slices to form the initial
hierarchy, and applies MIDASalg to detect slices for the
current web source.
Consolidating. To avoid hurting the total profit caused by over-
lapping slices in the parent and children web sources, MIDAS
prunes the slices in the parent web source when there exists

http://space.skyrocket.de/doc_sat/apollo-history.htm
http://space.skyrocket.de/doc_sat/apollo-history.htm
http://space.skyrocket.de/doc_sat
http://space.skyrocket.de/doc_sat
http://space.skyrocket.de/doc_lau_fam
http://space.skyrocket.de/.../atlas.htm
http://space.skyrocket.de/.../castor-4.htm

Sharding
Slices

Slices in Previous
Level

Extracted Facts

Output
slices

Detecting
Slices

Consolidating
Slices

Initialized Slices

Fig. 6: The MIDAS highly-parallelizable framework that
identifies slices from multiple web sources in three phases. For
the “Detecting Slices” module, MIDAS can employ MIDASalg
or other slice detection algorithms.

a set of slices in the children web sources that cover the same
set of facts with higher profit. MIDAS delivers the remaining
slices in the parent web source as the input for the next round.
Example 16. In Example 1, web sources are in three different
levels: web domain (http:// space.skyrocket.de), sub-domain
(http:// space.skyrocket.de/<category>), and web pages
(http:// space.skyrocket.de/<category>/<project>). Instead of
applying MIDASalg on web sources at every level, MIDAS
starts from the web pages:
1st round: We start with the finest-grained web sources in the
form http:// space.skyrocket.de/<category>/<project>. MIDAS
shards the facts under each web source such that facts under
the same web source are grouped together. MIDAS then detects
the high-profit slices through the slice detection algorithm,
MIDASalg, on each of the 5 web sources. Among 5 identified
slices (one under each web source), only two have positive
profit: slices S2 and S3 for rocket family “Atlas” and “Castor-
4”, respectively. Finally, MIDAS consolidates the derived slices
by exporting the two positive profit slices into the next round.
2nd round: We start with the two slices, S2 and S3, exported
from the previous iteration. After sharding, both slices are
assigned to the same coarser-grained web source, http://
space.skyrocket.de/doc_lau_fam. Starting from the hierarchy
initialized with these two slices, MIDAS applies MIDASalg and
detects slice S5 that indicates “rocket families sponsored by
NASA”. In the consolidating step, MIDAS compares S5 in the
parent web source with slices S2, S3 in the children web sources
and discards the latter slices since they lead to lower profit.

This framework is high-parallelizable as the data can be
distributed by using the web source URL as the key, and
slices as the value under each of the sharding, detecting, and
consolidating steps. We implemented MIDAS in MapReduce
to process data from an internet-scale automated extraction
system (Section IV-A). The MIDAS framework is also versatile,
and can support the parallelization of alternative algorithms, by
adjusting the slice detection algorithm in the Detecting phase.

IV. EXPERIMENTAL EVALUATION

In this section, we first show a few real-world website slices
MIDAS identified to augment Freebase as qualitative examples:
these verify our hypothesis that automatic extractions, which are
often of low accuracy and coverage, can still suggest valuable
data sources for knowledge augmentation. We then present an
extensive evaluation of the efficiency and effectiveness of MI-

DAS over real-world and synthetic data. Our experiments show
that MIDAS is significantly better than the baseline algorithms at
identifying the best sources for knowledge base augmentation.

A. Qualitative Examples in KnowledgeVault

We applied MIDAS on KnowledgeVault, a dataset extracted
by a comprehensive knowledge extraction system, which
includes 810M facts extracted from 218M web sources. In
Figure 3, we demonstrate the 5 highest-profit slices that MIDAS
derived to augment Freebase. From the results, we have three
observations. First, we manually checked the produced web
slices, and we found that they all correspond to good sources
with valuable information and they are easy for extraction.
Second, all these slices contain data on verticals that are
missing from Freebase. Third, the KnowledgeVault data that
MIDAS used as input contained very limited knowledge that
had been automatically extracted from these sources (e.g.,
KnowledgeVault had extracted only a few attributes, e.g., name
and classification, for marine species from the source http://
www.marinespecies.org, even though the source provides many
more attributes, such as species’ distribution). Nevertheless,
this limitation does not prevent MIDAS from identifying useful
contents from these sources for knowledge base augmentation.

B. Experimental Setup

We ran our evaluation on a ProLiant DL160 G6 server with
16GB RAM, two 2.66GHZ CPUs with 12 cores each, running
CentOS release 6.6.

Datasets: empty initial KB: We evaluate our algorithms over
two real-world datasets, which have significantly different
statistics (Figure 7). For our experiments on these datasets,
we use an empty initial knowledge base and evaluate the
precision of returned slices.

ReVerb. The ReVerb ClueWeb extraction dataset [18] samples
sentences from the Web using Yahoo’s random link service and
uses 6 OpenIE extractors to extract facts from these sentences.
The dataset includes facts extracted with confidence score
above 0.75. Entities and predicates in ReVerb are presented in
unlexicalized format; for example, the fact (“Boston”, “be a
city in”, “USA”) is extracted from https://en.wikipedia.org.

NELL. The Never-Ending Language Learner project [12]
is a system that continuously extracts facts from text in
webpages and maintains those with confidence score above
0.75. Unlike ReVerb, NELL is a ClosedIE system and the
types of entities follow a pre-defined ontology; for example, in
the fact (“concept/athlete/MichaelPhelps”, “generalizations”,

“concept/athlete”), extracted from Wikipedia, the subject
“concept/athlete/MichaelPhelps” and object “concept/athlete”
are both defined in the ontology.

Evaluation Setup. Due to the scale of the ReVerb and NELL
datasets, we report the precision of the returned slices. We
consider a web source slice as “correct” if it satisfies two
criteria: (1), whether it provides information that is absent
from the existing knowledge base; and (2), whether it allows
for easy annotation. We implement these two criteria based

http://space.skyrocket.de
http://space.skyrocket.de/<category>
http://space.skyrocket.de/<category>/<project>
http://space.skyrocket.de/<category>/<project>
http://space.skyrocket.de/doc_lau_fam
http://space.skyrocket.de/doc_lau_fam
http://www.marinespecies.org
http://www.marinespecies.org
https://en.wikipedia.org

Dataset # of facts # of pred. # of URLs Existing KB

ReVerb 15M 327K 20M Empty
NELL 2.9M 330 340K Empty
ReVerb-Slim 859K 33K 100 Adjustable
NELL-Slim 508K 280 100 Adjustable

Fig. 7: Statistics of real-world datasets.

URL Desired slices description

http://www.nationsencyclopedia.com Information about nations
https://www.drugs.com Medicinal chemical
https://www.citytowninfo.com/places US city profiles
http://www.u-s-history.com/ Events in US history
http://blogs.abcnews.com No desired slice
http://voices.washingtonpost.com No desired slice

Fig. 8: A snapshot of selected web sources in the silver standard:
Among 100 selected web sources, 50 of them contain at least
one high-profit slice.

on two statistics: (a) The ratio (Rnew) of new facts for the
covered entities; (b) The ratio (Ranno) of entities that provide
homogeneous information. To evaluate a given web source slice,
we first randomly select K or fewer entities and their web
pages; then, we display them to human workers, together with
the slice description and existing facts associated with the entity;
finally, we ask human workers to label the above two statistics.
For this set of experiments on ReVerb and NELL, since the
initial knowledge base is empty, the first ratio Rnew becomes
binary: it equals to 1.0 when there exist facts of the associated
entities, or 0.0 otherwise. In our experiment, we set K = 20
and mark a slice as “correct” if both statistics are above 0.5.

Datasets: existing KB with adjustable coverage: We further
evaluate our algorithms over datasets with adjustable coverage.
ReVerb-Slim/NELL-Slim. The ReVerb and NELL datasets
provide the input of the slice discovery problem, but they do
not contain the optimal output that suggests “what to extract and
from which web source”. To better evaluate different methods,
we generate two smaller datasets, ReVerb-Slim and NELL-Slim,
over a subset of web sources in the ReVerb and NELL datasets.
We manually label the content of these sources to create an
Initial Silver Standard of their optimal slices with respect to an
empty existing knowledge base. We consider that this optimal,
manually-curated set of slices forms a complete knowledge base
(100% coverage). We then create knowledge bases of varied
coverage, by selecting a subset of the Initial Silver Standard:
to create a knowledge base of x% coverage, we (1) randomly
select x% of the slices from the Initial Silver Standard; (2) build
a knowledge base with the facts in the selected slices; (3) use
the remaining slices (those not selected in step 1) to form the
optimal output for the new knowledge base.
Evaluation Setup. For ReVerb-Slim and NELL-Slim datasets,
we select the web sources and generate the Initial Silver
Standard as follows: (1) we manually select 100 web sources,
such that 50 of them contain at least one high-profit slice,
with respect to an empty knowledge base; (2) we apply
all algorithms on the selected web sources with an empty
knowledge base; (3) we manually label slices and web sources
returned by the algorithms, and add those labeled as correct to

the Initial Silver Standard. We demonstrate a snapshot of the
selected web sources and the description of the labeled silver
standard slices for the ReVerb-Slim dataset in Figure 8. As
described earlier, the initial silver standard allows us to adjust
the coverage of the existing knowledge base and the optimal
output. In our experiment, we evaluate the performance of the
different methods against knowledge bases of varied coverage,
ranging from 0% (empty KB) to 80%.
Comparisons: We implemented and compared the methods:
NAÏVE. There are no baselines that produce web source slices,
as this is a novel concept. We compare our techniques with
a naïve baseline that selects entire web sources (rather than
a slice of their content) based on the number of new facts
extracted from each source.
GREEDY. Our second comparison is a greedy algorithm that
focuses on deriving a single slice with the maximum profit
from a web source. It relies on our proposed profit function
and generates the slice in a web source by iteratively selecting
conditions that improve the profit of the slice the most.
AGGCLUSTER. We compare our techniques with
agglomerative clustering [31], using our proposed objective
function as the distance metric. This algorithm initializes a
cluster for each individual entity, and it merges two clusters
that lead to the highest non-negative profit gain at each iteration.
The time complexity of this algorithm is O(|E|2log(|E|),
where |E| is the number of entities in a web source.
MIDAS (Section III-A). Our MIDASalg algorithm organizes
candidate slices in a hierarchy to derive a set of slices from
a single source. Used as the slice detection module in the
parallelizable framework of MIDAS (Section III-B), it derives
slices across multiple sources.

Note that our parallelizable framework in Section III-B
also supports the alternative algorithms, including GREEDY
and AGGCLUSTER, by adjusting the slice detection algorithm
in the Detecting phase. Therefore, with the support of our
framework, all of these algorithms can easily run in parallel.
Metrics: We evaluate our methods with the metrics below:
Effectiveness. We measure the effectiveness of the different
algorithms using the standard metrics of precision, recall, and
f-measure. Precision measures the fraction of returned slices
that are of high profit, as per our labeling. Recall measures
the fraction of high-profit slices in our silver standard that are
returned. F-measure is the harmonic mean (2·precision·recall

precision+recall)
of precision and recall. As we discussed in Section II-A, slices
may select the same set of facts. To account for such cases,
we use Jaccard similarity to compare two slices and consider
them as equivalent when the Jaccard similarity is above 0.95.
Efficiency. We evaluate the runtime performance of all alter-
native methods by measuring their total execution time.

C. Evaluation on Real-World Data

Our evaluation on the real-world datasets includes two
components. First, we focus on a smaller version of the
datasets, where we can apply our silver standard to better
evaluate the result quality using precision, recall, and f-measure

http://www.nationsencyclopedia.com
https://www.drugs.com
https://www.citytowninfo.com/places
http://www.u-s-history.com/
http://blogs.abcnews.com
http://voices.washingtonpost.com

●MIDAS Greedy Naive

AggCluster

AggCluster

●
● ●

●

●

●
●
●●●●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Recall

Pr
ec
is
io
n

0.0 0.2 0.4 0.6 0.8
CoveragePercentage

0.00

0.25

0.50

0.75

1.00

Re
ca
ll

(a)Coverageratio=0.
● ●

●
●
●

●
●
●
●●●●●●●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Recall

Pr
ec
is
io
n

(b)ComparisononRecall.

0.0 0.2 0.4 0.6 0.8
CoveragePercentage

0.00

0.25

0.50

0.75

1.00

Pr
ec
is
io
n

(c)Coverageratio=0.4.
●

●

●

●●
●●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Recall

Pr
ec
is
io
n

(d)ComparisononPrecision.

0.0 0.2 0.4 0.6 0.8
CoveragePercentage

0.00

0.25

0.50

0.75

1.00

F-
me
as
ur
e

(e)Coverageratio=0.8. (f)ComparisononF-measure.

Fig.9:ComparisonofalgorithmsontheReVerb-Slimdataset.
MIDASperformsthebestoverKBswithdifferentcoverage.

acrossknowledgebasesofdifferentcoverage.Second,we
studytheperformanceofallmethodsonReVerbandNELL,
reportingtheprecisionofthe methods’top-kresults,for
varyingvaluesofk,andtheirexecutionefficiency.

Slicequalityvs.KnowledgeBasecoverage:Forthisexperi-
ment,weevaluatethefourmethodsontheReVerb-Slimand
NELL-Slimdatasets,eachwiththe100websourceswith
labeledsilverstandardandwerunthefourmethodsusing
inputknowledgebasesofcoveragevaryingfrom0to80%,as
describedinSectionIV-B.
Weshowtheprecision-recallcurvesforthreecoverage

ratios:0,0.4,and0.8andtheprecision,recall,andf-measure
withincreasingcoverageratiofrom0to0.8.Duetospace
limit,weonlypresenttheresultonReVerb-Slimdatasetin
Figure9andwehighlightthemajorobservationsofresults
onthe NELL-Slimdataset. Asshown, MIDASperforms
significantlybetterthanthealternativealgorithms,especially
ontheReVerb-Slimdataset,butthereisanoticeabledeclinein
performancewithincreasedcoverage.Thisdeclineispartially
anartifactofoursilverstandard:sincethesilverstandard
wasgeneratedagainstanemptyknowledgebase,theprofit
ofsomeofitsslicesdropsastheslicesnowhaveincreased
overlapwithexistingfacts.MIDAStendstofavoralternative
slicestocovernewfacts,andmayreturnslicesthatarenot
includedinthesilverstandardbutare,infact,better.
GREEDYperformspoorlyonbothdatasets(wellunder0.5for

allmeasures).Itseffectivenessisdominatedbyitsrecall,which
increaseswithcoverage.Thisisexpectedsinceinknowledge

basesofhighercoverage,therearefewerremainingslicesfor
eachsourceinthesilverstandard.
AGGCLUSTERperformspoorlyforReVerb-Slim.Thisis

because AGGCLUSTERis morelikelyto make mistakes
fordatasetswithmoreentitiesandpredicates.Inaddition,
AGGCLUSTERrequiressignificantlylongerexecutiontime
comparedtoMIDAS(asdemonstratedinFigure10d).
NAÏVErankswebsourcesaccordingtothenumberofnew

facts,thusitsaccuracyheavilyreliesontheportionofweb
sourcesthatcontainonlyonehigh-profitslice.Thus,itachieves
similarrecallinalldifferentscenarios.Overall,theperformance
ofthisbaselineislowacrosstheboard.
Duetothelimitedsizeofthesetwodatasets,theexecution
timeofthefourmethodsdoesnotdiffersignificantly. We
evaluatetheexecutionefficiencyofthemethodsthroughour
nextexperimentonthefulldatasets,ReVerbandNELL.

Precisionandefficiency:Wefurtherstudythequalityofthe
resultsofallfourmethodsbylookingattheirtop-kreturned
slices,orderedbytheirprofit,whenthealgorithmsoperateonan
emptyknowledgebase.Figures10aand10creporttheprecision
forvariedvaluesofkuptok=100,forReVerbandNELL,
respectively. WeobservethattheNAÏVEbaselineperforms
poorly,withprecisionbelow0.25and0.4,respectively.Thisis
expected,asNAÏVEconsidersthenumberoffactsthatarenew
inasource,butdoesnotconsiderpossiblecorrelationsamong
them.Thus,NAÏVEmayconsideraforumoranewswebsite,
whichcontainsalargenumberoflooselyrelatedextractions,
asagoodwebsourceslice.Incontrast,MIDASoutperforms
NAÏVEbyalargemargin,maintainingprecisionabove0.75for
bothdatasets.ThemajordisadvantageofGREEDYisthatitmay
missmanyhigh-profitslicesasitonlyderivesasingleslice
perwebsource.However,sinceweonlyevaluatethetop-100
returns,theprecisionofGREEDYremainshighonbothdatasets.
AGGCLUSTERperformswellontheNELLdataset,butnotas
wellonReVerb,whichincludesahighernumberofentities
andpredicates.ThisisbecauseAGGCLUSTERismorelikely
toreachalocaloptimumfordatasetswithmoreentitiesand
predicates. WhileAGGCLUSTERiscomparabletoourmethods
withrespecttoprecision,itdoesnotscaleoverwebsources
withlargerinput,anditsrunningtimeisanorderofmagnitude
(ormore)slowerthanourmethodsinmostcases.Inparticular,
itsefficiencydropssignificantlyonsourceswithalarge
numberoffacts.TheNELLdatasetcontainsonesourcethatis
disproportionallylarger,anddominatestherunningtimeofAG-
GCLUSTER(Figure10d).InReVerb,mostsourceshavealarge
numberoffacts,sotheincreaseismoregradual(Figure10b).In
contrast,theexecutiontimeofGREEDY,andMIDASincreases
linearly.NAÏVEisthefastestofthemethods,asitsimply
countsthenumberofnewfactsthatawebsourcecontributes.

D.EvaluationonSyntheticData

Weusesyntheticdatatoperformadeeperanalysisofthe
tradeoffsbetweenthethreealgorithms,GREEDY,MIDAS,and
AGGCLUSTER,thatuseourobjectivefunctionandtostudythe
effectivenessofthepruningstrategiesofourproposedalgo-
rithm,MIDAS.Wecreatesyntheticdatabyrandomlygenerating

● AggCluster NaiveMIDAS Greedy
●

● ● ●
● ● ● ● ● ●

0.2

0.4

0.6

0.8

20 40 60 80 100
Top−k

Pr
ec
is
i
o
n ● ● ●

● ● ● ●
● ● ●

●

●

10−3

10−1

101

103

0.00 0.25 0.50 0.75 1.00
Input ratio

Ti
me
 (
mi
n)

(a)Top-kprecisiononReVerb.

●

● ●
● ● ● ● ● ● ●

0.25

0.50

0.75

1.00

20 40 60 80
Top−k

Pr
ec
is
i
o
n

(b)ExecutiontimeonReVerb.

●

●●●●●●●●●●●●●●

0.01

1.00

0.25 0.50 0.75 1.00
Input ratio

Ti
me
 (
mi
n)

(c)Top-kprecisiononNELL. (d)ExecutiontimeonNELL.

Fig.10:Top-kprecisionandexecutiontimeonReVerbandNELLdata.Theinputratiocorrespondstotheratioofsources
considered(e.g.,aratioof0.75meansthat75%ofthewebsourcesareconsideredbyeachalgorithm).MIDASachieveshigher
precisionandoutperformsAGGCLUSTER

● AggCluster NaiveMIDAS Greedy

intermsofefficiency.

● ● ● ●

●
●

●
●
●

●

0.25

0.50

0.75

1.00

2.5k 5k 7.5k 10k
of Facts

F
−
me
as
ur
e

● ●
●

●

●

●

0

25

50

75

100

125

2.5k 5k 7.5k 10k
of Facts

Ti
me
 (
se
c)

(a)Comparisononaccuracy.

●

●
●

●

● ● ●
●
●
●

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10
of Optimal Slices

F
−
me
as
ur
e

(b)Comparisononruntime.

● ● ● ● ● ● ● ●
●
●

0

20

40

60

1 2 3 4 5 6 7 8 9 10
of Optimal Slices

Ti
me
 (
se
c)

(c)Comparisononaccuracy. (d)Comparisononruntime.

Fig.11:Comparisonofthemethodsthatuseourobjectivefunction.MIDASoutperformsAGGCLUSTERineffectivenessand
efficiency.GREEDYislesseffectivethanMIDAS,butitisfaster.

factsinawebsourcebasedonuser-specifiedparameters:the
numberofslicesk,thenumberofoptimalslicesm≤k(output
size),andthenumberoffactsn(inputsize):Foreachslice,
wefirstgenerateitsselectionrulethatconsists5conditions
andthencreatesn·1%entitiesinthisslice.Tobettersimulate
thereal-worldscenario,wealsointroducesomerandomness
whilegeneratingthefactsintheoptimalslice:foreachentity,
theprobabilityofhavingaconditioninthecorresponding
selectionruleisabove0.95andtheprobabilityofhavinga
conditionabsentfromtheselectionruleisbelow0.05.Among
kslices,weselectmofthemasoptimalslicesandconstructthe
existingknowledgebaseaccordingly:fornon-optimalslices,we
randomlyselect0.95oftheirfactsandaddthemintheexisting
knowledgebase.Inaddition,weensurethateachoptimalweb
sourceslicecoversatleast5%ofthetotalinputfacts.

WecomparetheGREEDY,MIDAS,andAGGCLUSTERin
termsoftheirtotalrunningtimesandtheirf-measurescores
(Figure11).Inourfirstexperiment,wefixb=20,m=10(10
optimalslicesoutof20slicesinawebsource),andrangethe
numberoffactsfrom1,000to10,000.MIDASremainshighly
accurateindetectingwebsourceslicesinallthesesettings.
However,duetoitstimecomplexity,theexecutiontimeof
MIDASgrowslinearlywiththenumberoffacts.AGGCLUSTER
tendstomakemoremistakeswhentherearemorefactsandits
executiontimegrowsatasignificantlyhigherratethanMIDAS.
Thegreedyalgorithm,GREEDY,runsmuchfasterthantheother
algorithms,butitcanonlydetectoneoutoftenoptimalslices.

Inoursecondexperiment,weuseawebsourcewith5000
facts(n=5000)on20slices(b=20),andvarythenumber
ofoptimalslicesinthewebsourcefrom1to10.Wereport
theexecutiontimeandf-measureinFigures11dand11c,

respectively.AGGCLUSTERismuchslowerthanMIDASandit
failstoidentifytheoptimalslicesunderseveralsettings.This
isexpectedasAGGCLUSTERonlycombinestwoslicesata
time,thusitneedsmoreiterationstofinishandtheprobability
ofreachingalocaloptimumismuchhigherthan MIDAS.
Notably,MIDASachievesperfectf-measureacrosstheboard.
GREEDYisthreetimesfasterthanMIDAS,butitsf-measure
scoredeclinesquicklyasthenumberofslicesincreases.This
isexpected,asGREEDYcanonlyretrieveasinglehigh-profit
slice.Atthesametime,GREEDYisabletofindtheoptimal
slicewhenthereisonlyone.

E.Remainingchallenges

Ourevaluationshowsthatouralgorithmsareveryeffective
atderivingwebsourceslicesofhighprofitforthetaskof
knowledgebaseaugmentation.However,therearestillmany
challengestowardssolvingthisproblemduetothequalityof
currentextractionsystems.Thereisasubstantialnumberof
missingextractionsduetothelackoftrainingdataandone
cannotinferthequalityofwebsourceswithrespecttosuch
missingextractions.Moreover,althoughtherearetechniques[7,
16,28]toimprovetheextractionprecision,incorrectnessand
redundancymaystillpersistandfurtherinfluenceourresults.

V.RELATEDWORK

Knowledgeextractionsystemsextractfactsfromdiverse
datasourcesandgeneratefactsineitherfixedontologiesfor
theirsubjects/predicatecategories,orinunlexicalizedformat:
ClosedIEextractionsystems,includingKnowledgeVault[14],
NELL[12],PROSPERA[26],DeepDive/Elementary[27,30],
andextractionsystemsintheTAC-KBPcompetition[13],

often generate facts of the first type; whereas OpenIE
extraction system [18, 19] normally extract facts of the latter
type. In addition, there are many data cleaning and data fusion
tools [7, 16] to improve extraction quality of such extraction
systems. MIDAS is not comparable to such extraction systems,
instead, it leverages to output of these extraction systems to
identify web source slice candidates. In addition, the quality
of web source slices MIDAS derives significantly relies on
the performance of the above systems.

Similar to source selection techniques [17] for data
integration tasks, MIDAS also uses customized gain and cost
functions to evaluate the profit of a web source slice. However,
the slice discovery problem is fundamentally different from
source selection problems since the candidate web source
slices are unknown.

Collection Selection [9, 10] has been long recognized as an
important problem in distributed information retrieval. Given
a query and a set of document collections stored in different
servers or databases, collection selection techniques focus
on efficiently retrieving a ranked list of relevant documents.
The slice discovery problem is correlated with the collection
selection problem: web sources under the same web domain
form a collection, which is further described by the extracted
facts; our goal, finding the right web sources for knowledge
gaps, can also be considered as a query operate on the
collections of web sources. However, instead of a query of
keywords, our query is an existing knowledge base. Other
than the difference on the queries, there are several additional
properties that render these two problems fundamentally
different: first, the similarity metrics, which focus on measuring
the semantic similarity, in collection selection, do not apply
to the slice discovery problem; second, the web sources in
a collection in the slice discovery problem form a hierarchy;
third, the slice discovery problem not only targets retrieving
relevant web sources, but also generating descriptions for the
web sources with respect to our query on the fly.

Finally, the slice discovery problem in this paper is related to
clustering of entities in a web source [22]. However, it is unclear
how to form features for entities. In addition, existing clustering
techniques [32], fail to provide any high level description of
the content in a cluster, thus they are ill-suited for solving the
slice discovery problem.

VI. CONCLUSIONS

In this paper, we presented MIDAS, an effective and highly-
parallelizable system, that leverages extracted facts in web
sources, for detecting high-profit web source slices to fill
knowledge gaps. In particular, we defined a web source slice
as a selection query that indicates what to extract and from
which web source. We designed an algorithm, MIDASalg, to
detect high-quality slices in a web source and we proposed a
highly-parallelizable framework to scale MIDAS to million of
web sources. We analyzed the performance of our techniques
in synthetic data scenarios, and we demonstrated that MIDAS
is effective and efficient in real-world settings.
Acknowledgements: This material is based upon work sup-
ported by the NSF under grants CCF-1763423 and IIS-1453543.

REFERENCES
[1] Freebase. https://developers.google.com/freebase.
[2] How google and microsoft taught search to “understand” the web.

http://arstechnica.com/information-technology/2012/06/inside-the-architecture-
of-googles-knowledge-graph-and-microsofts-satori/. Accessed: 2016-02-05.

[3] Size of wikipedia. https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia.
[4] R. Agrawal, R. Srikant, et al. Fast algorithms for mining association rules. In

VLDB, pages 487–499, San Francisco, CA, USA, 1994.
[5] G. Angeli, S. Gupta, M. Jose, C. D. Manning, C. Ré, J. Tibshirani, J. Y. Wu, S. Wu,

and C. Zhang. Stanford’s 2014 slot filling systems. TAC KBP, 695, 2014.
[6] M. Bellare and P. Rogaway. The complexity of approximating a nonlinear program.

Mathematical Programming, 69(1):429–441, 1995.
[7] J. Bleiholder and F. Naumann. Data fusion. CSUR, 41(1):1:1–1:41, 2009.
[8] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a

collaboratively created graph database for structuring human knowledge. In
SIGMOD, pages 1247–1250, New York, NY, USA, 2008.

[9] J. Callan. Distributed information retrieval. Advances in information retrieval,
pages 127–150, 2002.

[10] J. Callan and M. Connell. Query-based sampling of text databases. ACM
Transactions on Information Systems (TOIS), 19(2):97–130, 2001.

[11] J. Callan, M. Hoy, C. Yoo, and L. Zhao. Clueweb09 data set. https://www.
lemurproject.org/clueweb09.php/, 2009.

[12] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr, and T. M. Mitchell.
Toward an architecture for never-ending language learning. In AAAI, pages 1306–
1313, Atlanta, Georgia, 2010.

[13] H. Chang, M. Abdurrahman, A. Liu, J. T.-Z. Wei, A. Traylor, A. Nagesh,
N. Monath, P. Verga, E. Strubell, and A. McCallum. Extracting multilingual
relations under limited resources: Tac 2016 cold-start kb construction and slot-
filling using compositional universal schema. Proceedings of TAC, 2016.

[14] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann,
S. Sun, and W. Zhang. Knowledge vault: A web-scale approach to probabilistic
knowledge fusion. In SIGKDD, pages 601–610, New York, NY, USA, 2014.

[15] X. Dong, E. Gabrilovich, K. Murphy, V. Dang, W. Horn, C. Lugaresi, S. Sun, and
W. Zhang. Knowledge-based trust: Estimating the trustworthiness of web sources.
PVLDB, 8(9):938–949, 2015.

[16] X. Dong and F. Naumann. Data fusion: resolving data conflicts for integration.
PVLDB, 2(2):1654–1655, 2009.

[17] X. Dong, B. Saha, and D. Srivastava. Less is more: Selecting sources wisely for
integration. PVLDB, 6(2):37–48, 2012.

[18] A. Fader, S. Soderland, and O. Etzioni. Identifying relations for open information
extraction. In EMNLP, pages 1535–1545, Stroudsburg, PA, USA, 2011.

[19] J. Fan, D. Ferrucci, D. Gondek, and A. Kalyanpur. Prismatic: Inducing knowledge
from a large scale lexicalized relation resource. In Proceedings of the NAACL HLT
2010 first international workshop on formalisms and methodology for learning by
reading, pages 122–127, USA, 2010.

[20] A. L. Gentile and Z. Zhang. Web scale information extraction, ecml/pkdd tutorial,
2013.

[21] P. Gulhane, A. Madaan, R. Mehta, J. Ramamirtham, R. Rastogi, S. Satpal, S. H.
Sengamedu, A. Tengli, and C. Tiwari. Web-scale information extraction with
vertex. In Proceedings of the 2011 IEEE 27th International Conference on Data
Engineering, ICDE ’11, pages 1209–1220, Washington, DC, USA, 2011.

[22] A. K. Jain and R. C. Dubes. Algorithms for clustering data. Upper Saddle River,
NJ, USA, 1988.

[23] L. Kaufman and P. J. Rousseeuw. Finding groups in data: an introduction to cluster
analysis, volume 344. USA, 2009.

[24] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes,
S. Hellmann, M. Morsey, P. van Kleef, S. Auer, et al. Dbpedia–a large-scale,
multilingual knowledge base extracted from wikipedia. Semantic Web, 6(2):167–
195, 2015.

[25] F. Li, X. L. Dong, A. Langen, and Y. Li. Knowledge verification for long-tail
verticals. PVLDB, 10(11):1370–1381, Aug. 2017.

[26] N. Nakashole, M. Theobald, and G. Weikum. Scalable knowledge harvesting with
high precision and high recall. In Proceedings of the fourth ACM international
conference on Web search and data mining, pages 227–236, USA, 2011.

[27] F. Niu, C. Zhang, C. Ré, and J. Shavlik. Elementary: Large-scale knowledge-base
construction via machine learning and statistical inference. IJSWIS, 8(3):42–73,
2012.

[28] R. Pochampally, A. Das Sarma, X. Dong, A. Meliou, and D. Srivastava. Fusing
data with correlations. In SIGMOD, pages 433–444, New York, NY, USA, 2014.

[29] T. Rekatsinas, X. Dong, and D. Srivastava. Characterizing and selecting fresh data
sources. In SIGMOD, pages 919–930, New York, NY, USA, 2014.

[30] J. Shin, S. Wu, F. Wang, C. De Sa, C.and Zhang, and C. Ré. Incremental knowledge
base construction using deepdive. PVLDB, 8(11):1310–1321, 2015.

[31] R. Sibson. Slink: an optimally efficient algorithm for the single-link cluster method.
The computer journal, 16(1):30–34, 1973.

[32] M. Steinbach, G. Karypis, V. Kumar, et al. A comparison of document clustering
techniques. KDD workshop on text mining, 400(1):525–526, 2000.

[33] M. Surdeanu. Overview of the tac2013 knowledge base population evaluation:
English slot filling and temporal slot filling, 2013.

[34] M. Surdeanu and H. Ji. Overview of the english slot filling track at the tac2014
knowledge base population evaluation. In TAC, 2014.

https://developers.google.com/freebase
http://arstechnica.com/information-technology/2012/06/inside-the-architecture-of-googles-knowledge-graph-and-microsofts-satori/
http://arstechnica.com/information-technology/2012/06/inside-the-architecture-of-googles-knowledge-graph-and-microsofts-satori/
https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
https://www.lemurproject.org/clueweb09.php/
https://www.lemurproject.org/clueweb09.php/

	Introduction
	Problem Definition
	Web Source Slice
	The Slice Discovery Problem

	Deriving Web Source Slices
	Deriving Slices from a Single Source
	Step 1: Slice hierarchy construction
	Step 2: Top-down hierarchy traversal

	Multiple Slices from Multiple Sources

	Experimental Evaluation
	Qualitative Examples in KnowledgeVault
	Experimental Setup
	Evaluation on Real-World Data
	Evaluation on Synthetic Data
	Remaining challenges

	Related Work
	Conclusions

