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ABSTRACT
Motivation: A major challenge in next-generation genome seque-
ncing (NGS) is to assemble massive overlapping short reads that are
randomly sampled from DNA fragments. To complete assembling,
one needs to finish a fundamental task in many leading assembly
algorithms: counting the number of occurrences of k-mers (length-
k substrings in sequences). The counting results are critical for
many components in assembly (e.g. variants detection and read
error correction). For large genomes, the k-mer counting task can
easily consume a huge amount of memory, making it impossible for
large-scale parallel assembly on commodity servers.
Results: In this paper, we develop MSPKmerCounter, a disk-based
approach, to efficiently perform k-mer counting for large genomes
using a small amount of memory. Our approach is based on a novel
technique called Minimum Substring Partitioning (MSP). MSP breaks
short reads into multiple disjoint partitions such that each partition
can be loaded into memory and processed individually. By levera-
ging the overlaps among the k-mers derived from the same short
read, MSP can achieve astonishing compression ratio so that the
I/O cost can be significantly reduced. For the task of k-mer counting,
MSPKmerCounter offers a very fast and memory-efficient solution.
Experiment results on large real-life short reads data sets demon-
strate that MSPKmerCounter can achieve better overall performance
than state-of-the-art k-mer counting approaches.
Availability: MSPKmerCounter is available at http://www.cs.ucsb.edu/
∼yangli/MSPKmerCounter
Contact: yangli@cs.ucsb.edu

1 INTRODUCTION
High-quality genome sequencing plays an important role in genome
research. A central problem in genome sequencing is assembling
massive short reads generated by the next-generation sequencing
technologies (Mardis et al., 2008). These reads are usually ran-
domly extracted from samples of DNA segments. Typically a
modern technology can produce billions of short reads whose length
varies from a few tens of bases to several hundreds. For exam-
ple, massively parallel sequencing platforms, such as Illumina
(www.illumina.com), SOLiD (www.appliedbiosystems.com), and
454 Life Sciences (Roche) GS FLX (www.roche.com), can pro-
duce reads from 25 to 500 bases in length. The short read length
is expected to further increase in the following years.

Despite the progress in sequencing techniques and assembly
methods in recent years, de novo assembly remains a computati-
onally challenging task. The existing de novo assembly algorithms
can be classified into two main categories based on their internal
assembly model: (1) The overlap-layout-consensus model, used by
Celera (Myers et al., 2000), ARACHNE (Batzoglou et al., 2002),
Atlas (Havlak et al., 2004), Phusion (Mullikin et al., 2003) and
Forge (Platt et al., 2010); (2) The de Bruijn graph model, used by
Euler (Pevzner et al., 2001), Velvet (Zerbino et al., 2008), ABySS
(Simpson et al., 2009), AllPaths (Butler et al., 2008) and SOAPde-
novo (Li et al., 2010a). The overlap-layout-consensus model builds
an overlap graph between reads. Since each read can overlap with
many other reads, it is more useful for sequencing data sets with a
small number of long reads. The de Bruijn graph approach breaks
short reads to k-mers (substring of length k) and then connects k-
mers according to their overlap relations in the reads. The de Bruijn
graph approach is usually able to assemble larger quantities (e.g.,
billions) of short reads with greater coverage. Systematic compari-
son of these algorithms is given by Earl et al. (2011) and Salzberg
et al. (2012).

Although the de Bruijn graph approach comes up with a good fra-
mework to reduce the computation time for assembly, the graph size
can be extremely large, for example, containing billions of nodes
(k-mers) for genomes of higher eukaryotes like mammals. There-
fore, large memory consumption is a pressing practical problem
for the de Bruijn graph based approach (Miller et al., 2010). For
the short read sequences generated from mammalian-sized geno-
mes, software like Euler, Velvet, AllPaths and SOAPdenovo will
not be able to finish assembling successfully within a reasonable
amount of memory. Due to this drawback, it significantly limits
the opportunity to run de novo assembly on numerous commodity
machines in parallel for large-scale sequence analysis. This problem
has also blocked other application of de Bruijn graphs, e.g., variants
discovery in Iqbal et al. (2012).

To deal with the memory issue, an error correction step is often
taken to eliminate erroneous k-mers before constructing the de
Bruijn graphs. In most NGS data sets, a large fraction of k-mers
arise from sequencing errors. These k-mers have very low freque-
ncies. In the giant panda genome sequencing experiment (Li et al.,
2010b), the error correction process could eliminate 68% of the
observed 27-mers, reducing the total number of distinct 27-mers
from 8.62 billion to 2.69 billion. Though error correction is usually
helpful, obtaining the k-mer frequencies itself is a computationally
demanding task for large genome data sets. One “naive” solution
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is using a hash table, where keys are the k-mers and values are the
corresponding k-mer frequencies. Unfortunately, this approach will
easily blow up main memory. For example, in the Asian genome
short read data set (Li et al., 2010a), if k = 25, there are about 14.6
billion distinct k-mers. Assuming a load factor of 2/3 for the hash
table and encoding each nucleotide with 2 bits, the k-mers table
would require nearly 160 GB memory. Furthermore, this problem
will become severe when the length of short reads produced by the
next-generation sequencing techniques further increases.

A recently developed program called Jellyfish (Marcais et al.,
2011) is designed to count k-mers in a memory efficient way. It ado-
pts a “quotienting” technique to reduce the memory consumption of
k-mers stored in a hash table. Implemented with a multi-threaded,
lock-free hash table, it is able to count k-mers up to 31 nucleotides
in length using a much smaller amount of memory than the pre-
vious “naive” method. When there is no enough memory to carry
out the entire computation, Jellyfish will write intermediate coun-
ting results to disk and later merge them. Since the same k-mer may
appear in several different intermediate results, the merge operation
is not just a simple concatenation process; it can be quite slow. Ano-
ther state-of-the-art k-mer counting algorithm, BFCounter (Melsted
et al., 2011) is based on bloom filter, a probabilistic data structure
that can also reduce memory footprint. However, BFCounter is 3
times slower than Jellyfish when Jellyfish is able to finish the task in
memory (Melsted et al., 2011). And moreover, it might miss some
counts.

In this paper, we develop MSPKmerCounter, a disk-based appro-
ach, to efficiently perform k-mer counting for large genomes using a
small amount of memory. Our approach is based on a recently pro-
posed technique called Minimum Substring Partitioning (MSP) (Li
et al., 2013). MSP breaks short reads to “super k-mers” (substring
of length greater than or equal to k) such that each “super k-mer”
contains k-mers sharing the same minimum p-substring (p ≤ k).
The effect is equivalent to compressing consecutive k-mers using
the original sequences. It is shown that this compression approach
does not introduce significant computing overhead, but could lead
to partitions 10-15 times smaller than the direct approach using a
hash function (Li et al., 2013), thus greatly reducing I/O cost.

For the task of k-mer counting, MSPKmerCounter offers a very
fast and memory-efficient solution. Experiment results on large
real-life short reads data sets demonstrate that MSPKmerCounter
can achieve better overall performance than state-of-the-art k-mer
counting approaches like Jellyfish and BFcounter.

2 BACKGROUND
DEFINITION 1 (Short Read, K-Mer). A short read is a string over

alphabet Σ = {A,C,G, T} (in DNA assembly). A k-mer is a string
over Σ whose length is k. Given a short read s, s[i, j] denotes the
substring of s from the ith element to the jth element (both inclu-
sive). s can be broken into n − k + 1 k-mers, written as s[1, k],
s[2, k + 1], . . ., s[n − k + 1, n]. Two k-mers in s, s[i, k + i − 1],
s[i+ 1, k + i] are called adjacent in s.

We can view k-mers generated in a way that a window with width
k slides through a short read s. The adjacency relationship exists
between each pair of k-mers for which the last k-1 bases of the first
k-mer are exactly the same as the first k-1 bases of the last k-mer. .

DEFINITION 2 (Reverse Complement). DNA sequences can be
read in two directions: forwards and backwards with each nucleo-
tide changed to its Watson-Crick complement (A ↔ T and C ↔
G). For each DNA sequence, its corresponding read in the other
direction is called reverse complement and they are considered
equivalent in bioinformatics.

In most sequencing technologies, the fragments (short reads) are
randomly extracted from the DNA sequence in either direction. The-
refore, if two k-mers, K1 and K2, are adjacent from K1 to K2 in the
short reads data set, it implies that the reverse complement k-mer of
K2, say K2’ and the reverse complement k-mer of K1, say K1’,
are adjacent from K2’ to K1’. So in an assembly processing, each
short read should be read twice, once in forward direction and then
in the reverse complement direction. However, in real implementa-
tion, it is possible to avoid reading sequences twice by inferring the
subgraph introduced by reverse complements later from the forward
direction subgraph.

3 MINIMUM SUBSTRING PARTITIONING
Our approach to do fast and memory efficient k-mer counting is
based on a disk-based partition approach called Minimum Substring
Partitioning (MSP) (Li et al., 2013). MSP is able to partition k-mers
into multiple disjoint partitions, as well as retaining adjacent k-mers
in the same partition. This nice property introduces two advantages:
first, instead of being outputted as several individual k-mers, con-
secutive k-mers can be compressed to “super k-mers” (substring of
length greater than or equal to k), which will greatly reduce the I/O
cost of partitioning; second, with adjacent k-mers in the same parti-
tion, it is possible to do local assembly for each partition in parallel
and later merge them to generate the global assembly.

DEFINITION 3 (Substring). A substring of a string s =
s1s2 . . . sn is a string t = si+1si+2 . . . si+m, where 0 ≤ i and
i+m ≤ n.

DEFINITION 4 (Minimum Substring). Given a string s, a length-
p substring t of s is called the minimum p-substring of s, if ∀s′, s′ is
a length-p substring of s, s.t., t ≤ s′ (≤ defined by lexicographical
order). The minimum p-substring of s is written as minp(s).

DEFINITION 5 (Minimum Substring Partitioning). Given a string
s = s1s2 . . . sn, p, k ∈ N , p ≤ k ≤ n, minimum sub-
string partitioning breaks s to substrings with maximum length
{s[i, j]|i+ k− 1 ≤ j, 1 ≤ i, j ≤ n}, s.t., all k-mers in s[i, j] share
the same minimum p-substring, and it is not true for s[i, j + 1] and
s[i− 1, j]. s[i, j] is also called “super k-mer”.

Minimum Substring Partitioning comes from the intuition that
two adjacent k-mers are very likely to share the same minimum
p-substring if p << k, since there is a length-(k-1) overlap
between them. Figure 1 shows a Minimum Substring Partitioning
example. In this example, the first 4 k-mers have the same mini-
mum 4-substring, ACAC, as highlighted in red box; and the
last 3 k-mers share the same minimum 4-substring, ACCC, as
highlighted in blue box. In this case, instead of generating all
these 7 k-mers separately, we can just compress them using the
original short read. Namely, we compress the first 4 k-mers to
CTGACACTTGACCCGTGGT , and output it to the partition
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corresponding to the minimum 4-substring ACAC. Similarly, the
last 3 k-mers are compressed to CACTTGACCCGTGGTCAT
and outputted to the partition corresponding to the minimum 4-
substring ACCC. Generally speaking, given a short read s =
s1s2 . . . sn, if the adjacent j k-mers from s[i, i + k − 1] to
s[i+ j − 1, i+ j + k − 2] share the same minimum p-substring t,
then we can just output substring sisi+1 . . . si+j+k−2 to the parti-
tion corresponding to the minimum p-substring t without breaking
it to j individual k-mers. If j is large, this compression strategy will
dramatically reduce the I/O cost.

CTGACACTTGACCCGTGGTCAT

CTGACACTTGACCCGT
TGACACTTGACCCGTG
GACACTTGACCCGTGG
ACACTTGACCCGTGGT

ACTTGACCCGTGGTCA
CACTTGACCCGTGGTC

CTTGACCCGTGGTCAT

(a)

(b)

CTGACACTTGACCCGTGGT CACTTGACCCGTGGTCAT

…

Partition

ACCC

Partition

ACAC

Partition

ACAG

Fig. 1. A minimum substring partitioning example: (a)short read (b)K-mers
and MSP process

The results of the Minimum Substring Partitioning are determined
by the parameters k and p. Smaller p will increase the probability
that consecutive k-mers share the same minimum p-substring and
thus reduce the I/O cost. However, it will also introduce a problem
where the distribution of partition sizes become skewed and the lar-
gest partition may not fit in the main memory. In the extreme case of
p = 1, the size of the largest partition is almost as same as the size of
the short reads data set and other partitions are almost empty (assu-
ming the four nucleotides A, C, G, T are distributed randomly in the
data set). In that case, we lose the point of partitioning. On the other
hand, larger p will make the distribution of partition sizes evener at
the cost of decreasing the probability that consecutive k-mers share
the same minimum p-substring and thus increasing the I/O cost. In
the extreme case of p → k, almost no adjacent k-mers will share the
same minimum p-substring and thus no compression can be gained.
Therefore one needs to make a tradeoff (by varying p) between the
largest partition’s size and the I/O overhead. Fortunately, there is a
quite wide range of values that p can choose without affecting the
performance of MSP (Li et al., 2013).

DEFINITION 6 (Wrapped Partitions). Given a string set {si}, a
hash function H , the user-specified number of partitions N , for any
k-mer si,j , minimum substring partition wrapping assigns si,j to
the (H(minp(si,j)) mod N )-th partition.

Since each p-substring corresponds to one partition, the total
number of partitions in MSP is equal to 4p. When p increases, the
number of partitions will increase exponentially and many partitions
may become empty. To address this problem, one can introduce a
hash function to wrap the number of partitions to any user-specified

partition number. Then the k-mers are likely to be evenly distributed
across partitions.

DEFINITION 7 (Minimum Substring with Reverse Complement).
Given a string s, a length-p substring t of s is called the minimum
p-substring of s, if ∀s′, s′ is a length-p substring of s or s’ reverse
complement, s.t., t ≤ s′ (≤ defined by lexicographical order).

Definition 7 redefines minimum substring by considering the
reverse complement. With this new definition, we can make sure
each k-mer and its reverse complement k-mer are assigned to the
same partition. This property can help us save much time and
memory in the later processing (e.g. storing only the lexicogra-
phical smaller one of a k-mer and its reverse complement k-mer
in hash table and avoiding reading each short read twice to expli-
citly process reverse complement) since a k-mer and its reverse
complement are considered equivalent in bioinformatics and the
information introduced by reverse complement can be inferred from
the forward direction short reads. For simplicity reason, in the follo-
wing discussions, if not mentioned explicitly, we will ignore the
reverse complement issue. However, in our implementation and
experiments, we do consider its impact.

4 METHODS
In this section, we describe the detailed method to do k-mer
counting with the adoption of the minimum substring partitioning
technique introduced in the last section.

The first step is to partition short reads. In this step, we will cut
each short read of length n into (n−k+1) k-mers and then dispatch
these k-mers into different partitions. The Minimum Substring Parti-
tioning technique introduced in Section 3 is used as our partitioning
method. As mentioned before, with this partitioning method, we can
compress consecutive k-mers dispatched to the same partition into
one “super k-mer” to minimize the I/O cost.

There are several ways (e.g. straightforward, min-heap) to imple-
ment the minimum substring partitioning. Here we adopt the one
introduced in Li et al. (2013), since it is proved to have the best per-
formance in practice. The details of this implementation is described
in Algorithm 1.

Algorithm 1 Minimum Substring Partitioning
Input: String s = s1s2 . . . sn, integer k, p.
min s = the minimum p-substring of s[1, k]
min pos = the start position of min s in s
for all i from 2 to n− k + 1 do

if i > min pos then
min s = the minimum p-substring of s[i, i+ k − 1]
update min pos accordingly

else
if the last p-substring of s[i, i+ k − 1] < min s then

min s = the last p-substring of s[i, i+ k − 1]
update min pos accordingly

end if
end if

end for
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As mentioned before, we can view k-mers generated in a way that
a window with width k slides through a short read. In Algorithm 1,
initially when the window starts at position 1, we scan the window
to find the minimum p-substring, say min s, and the start position of
min s, say min pos. Then we slide the window forward, one symbol
each time, till the right bound of the window reaches the end of the
short read. After each sliding, we test whether the min pos is still
within the range of the window. If not, we have to re-scan the win-
dow to get new min s and min pos. Otherwise, we test whether the
last p-substring of the current window is smaller than current min s.
If yes, we set this last p-substring as new min s and update min pos
accordingly. If not, we just keep the old min s to calculate the par-
tition location. As described in last section, the neighboring k-mers
will likely contain the same minimum p-substring. Therefore, the re-
scan of the whole window will not occur very often. The worst case
time complexity is O(nk) p-substring comparisons. However, this
algorithm is more efficient in practice (close to O(n+lk), see detai-
led proof in Li et al. (2013)) when s is broken to only a few number
(l) of “super k-mers”. This is very true in minimum substring par-
titioning of real short reads. Table 1 shows that the average number
of breakdowns is small for several real short reads data sets.

Table 1. Average number of breakdowns for real short reads data sets

Data Set n k p Average Breakdown (l)

Budgerigar 150 59 10 5.22
Red tailed boa constrictor 121 59 10 3.89
Lake Malawi cichlid 101 59 10 2.77
Soybean 75 59 10 1.69

Note that in Algorithm 1, every time when we capture a mini-
mum substring change at position j of s or we reach the end of s, we
output a “super k-mer” of s that contains the previous minimum sub-
string into the partition corresponding to that minimum substring.
This part of code is not presented in Algorithm 1.

After obtaining the partitions, we can use a simple hash table
whose keys are k-mers and values are k-mer counts to count the
k-mer frequencies. For each partition, break the “super k-mers” into
k-mers and insert these k-mers into a hash table. Since adjacent k-
mers are only different by the first and last symbol, direct bit shift
operations (A, C, G, T can be encoded using 2 bits) can be applied
here to improve the efficiency. Whenever we see a new k-mer, we
first look up the hash table to see if it is already in the hash table:
if yes, we increase the frequency count by 1; otherwise, we put this
k-mer along with an initial frequency value 1 into the hash table.
After processing one partition, write the entries in hash table to a
disk file1 and release the memory occupied by that hash table. Since
all the occurrences of the same k-mer will locate in the same parti-
tion, the frequency count of a k-mer can be found in only one disk
file. This is a very good property, as we do not have to later merge
these frequency count disk files. The query of a k-mer’s frequency is
also very easy and efficient. Given a query k-mer, we can use MSP

1 Actually we will sort the k-mers in hash table before writing them back to
disk. Such sorting is used to facilitate efficient query of k-mer frequencies.

Table 2. Basic facts about the four sequence data sets used in
our experiments

bird snake fish soybean

Format fastq fastq fastq fastq
Size (GB) 106.8 181.7 137.4 40.1
Avg Read Length 150 121 101 75
No. of Reads (million) 323 573 598 227

to calculate its partition location and then perform binary search on
the corresponding count disk file to get the k-mer frequency.

5 EXPERIMENTAL RESULTS
In this section, we present experimental results that illustrate
the efficiency of our MSPKmerCounter on four large real-life
short reads data sets: Budgerigar (bird), Red tailed boa constri-
ctor (snake), Lake Malawi cichlid (fish) and soybean. (1) We
first analyze the efficiency of MSPKmerCounter by reporting the
memory and time costs, along with the temporary disk space
usage; (2) We then investigate the scalability and parallelizability of
MSPKmerCounter. We will compare MSPKmerCounter with two
state-of-the-art k-mer countering tools: Jellyfish (Marcais et al.,
2011) and BFCounter (Melsted et al., 2011). All the experiments, if
not specifically mentioned, are conducted on a server with 2.00GHz
Intel Xeon CPU and 512 GB RAM.

5.1 Sequence Datasets
Four very large real-life short reads data sets are used to test
MSPKmerCounter. The first one is the sequence data of Bud-
gerigar (bird) obtained from bioshare.bioinformatics.
ucdavis.edu/Data/hcbxz0i7kg/Parrot/BGI_illumina_
data/. These short reads were sequenced from the Illu-
mina HiSeq 2000 technology. The second one is the sequ-
ence data of Red tailed boa constrictor (snake) downloaded
from bioshare.bioinformatics.ucdavis.edu/Data/
hcbxz0i7kg/Snake/short_inserts/. These short reads
were obtained with the Genome Analyzer technology. The third
one is the sequence data of Lake Malawi cichlid (fish) downloaded
from bioshare.bioinformatics.ucdavis.edu/Data/
hcbxz0i7kg/fish/. And the last one is the sequence data of
soybean downloaded from ftp://public.genomics.org.
cn/BGI/soybean_resequencing/fastq/. Some basic
facts about these four data sets are shown in Table 2.

5.2 K-mer Counting Efficiency
We conduct experiments to test the efficiency of our MSPKme-
rCounter and compare it with two state-of-the-art k-mer counting
algorithms: Jellyfish, which is a fast, memory efficient k-mer coun-
ting tool based on a multi-threaded, lock-free hash table optimized
for counting k-mers up to 31 nucleotides in length; and BFCoun-
ter, which is a k-mer counting tool with greatly reduced memory
requirements based on bloom filter, a probabilistic data structure.
BFCounter is a completely in-memory kmer counting method.
Jellyfish can work both as in-memory or out-of-core. It requires
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user to pre-specify the size of the hash table: if the hash table is
large enough to hold all the k-mers, it will be an in-memory method;
otherwise, whenever the hash table fills up, the intermediate results
will be written to disk and merged later, making it become a disk-
based method. In this set of experiments, we will test Jellyfish under
these two different settings, denoted as Jellyfish(Memory) and Jelly-
fish(Disk) respectively. For Jellyfish(Memory), we pre-calculate the
number of distinct k-mers in each data set to make sure the hash
table is big enough to hold all the k-mers. For Jellyfish(Disk), we
set the hash table size to a fixed number so that it will consisten-
tly make use of ∼11 GB memory. We set the number of threads
to 1 for all the three methods, since BFCounter only supports sin-
gle thread. For MSPKmerCounter, we set the number of wrapped
partitions to 1,000 (to reduce memory footprint) and the minimum
substring length p to 10.

Table 3 presents the memory consumption and running time for
the three methods when applied to the snake, fish and soybean data
sets2 for counting 31-mers3.

Table 3. Comparison of memory consumption and running time for counting
31-mers on the snake, fish and soybean data sets.

Algorithm Memory (GB) Run Time (minutes)

snake fish soybean snake fish soybean

Jellyfish(Memory) 110 114 43 455.5 374.5 93.6
Jellyfish(Disk) 11 11 11 775.2 503.7 117.7
BFCounter 38 29 13 1899.8 1299 342.2
MSPKmerCounter 9.6 9.9 6.3 492.7 399.2 99

Table 4 shows the temporary disk space usage for the three meth-
ods when applied to the snake, fish and soybean data sets for
counting 31-mers.

Table 4. Comparison of temporary disk space usage
for counting 31-mers on the snake, fish and soybean
data sets.

Algorithm Temp Disk Space Usage (GB)

snake fish soybean

Jellyfish(Memory) 0 0 0
Jellyfish(Disk) 332 197 44
BFCounter 0 0 0
MSPKmerCounter 217 168 43

As can be seen from Table 3, when applied to a large sequ-
ence data set with deep coverage, our MSPKmerCounter soon
demonstrates its advantages. It uses much less memory than both

2 We reserve the bird data set to test scalability (See Section 5.3)
3 Jellyfish only supports counting k-mers whose length is smaller than 32.
BFCounter and MSPKmerCounter do not have such a constraint.

Jellyfish(Memory) and BFCounter. Its running time is close to that
of Jellyfish(Memory) and significantly shorter than that of BFCoun-
ter. Jellyfish(Disk) was able to finish the counting task using a small
amount of memory, by writing intermediate results to disk and later
merging them. But unfortunately, its merging process is relatively
inefficient since the k-mer sets in those intermediate results are not
completely disjoint. Therefore it is much slower than MSPKme-
rCounter. MSPKmerCounter requires no additional merging steps
after partial counting results are generated from individual partiti-
ons. Also, as can be seen from Table 4, MSPKmerCounter uses
less amount of temporary disk space than Jellyfish(Disk). Note that
Jellyfish(Memory) and BFCounter do not need to use any tempo-
rary disk space since they are completely memory-based. Actually
the memory consumption and temporary disk space usage of our
MSP-based counting method can be fully controlled by varying the
number of wrapped partitions and the minimum substring length
p. For more discussions (both theoretical and experimental) about
the sensitivity of MSP to these parameters, please refer to Li et al.
(2013).

5.3 Scalability
We then conduct experiments to test the scalability of Jellyfish,
BFCounter and our MSPKmerCounter. Specifically, we count the
k-mers in the Budgerigar data set for various levels of coverage,
using these three counting methods. In order to get different levels of
coverage, we randomly sampled the short reads data set to obtain a
desired amount of sequences. As same as the previous experiments,
here we also test Jellyfish under two different settings.

The memory consumption, running time and temporary disk
space usage for counting 31-mers in the Budgerigar(bird) data set
under various levels of coverage are shown in Figures 2(a), 2(b) and
2(c), respectively.

Figures 2(a) shows that with the increase of coverage, the memory
consumption of Jellyfish(Memory) increases significantly. In com-
parison, the memory utilizations of BFCounter and MSPKme-
rCounter only increase slightly. MSPKmerCounter outperforms
both Jellyfish and BFCounter in terms of memory footprint. Note
that we configure Jellyfish(Disk) to use at most 11 GB memory,
so its memory consumption does not change since coverage 5.
Figure 2(b) shows that with the increase of coverage, the running
time of all counting methods increases. However, the increasing
speed of BFCounter is much higher than that of Jellyfish and MSP-
KmerCounter. As the coverage increases, the running time gap
between MSPKmerCounter and Jellyfish(Disk) becomes larger and
larger, indicating MSPKmerCounter’s better scalability. Even when
compared with the purely memory-based Jellyfish(Memory), MSP-
KmerCounter is only slightly slower at all coverages. Figure 2(c)
shows that the temporary disk space usages of both Jellyfish(Disk)
and MSPKmerCounter increase as the coverage increases. But the
increasing speed of MSPKmerCounter is much slower than that
of Jellyfish(Disk), indicating MSPKmerCounter’s better scalabi-
lity in disk space utilization. Jellyfish(Memory) and BFCounter
need no extra disk space since they are completely memory-based.
To summary, when the coverage is low (e.g. less than 5), the
performance differences among Jellyfish, BFCounter and MSP-
KmerCounter are not very big, though MSPKmerCounter is still
much faster than BFCounter and uses less memory than both Jelly-
fish and BFCounter. As the coverage increases, MSPKmerCounter
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Fig. 2. Memory consumption, running time and temporary disk space usage of Jellyfish, BFCounter and MSPKmerCounter for counting 31-mers in the
Budgerigar data set under various levels of coverage

quickly dominates the scene. In a high coverage situation, the main
memory is not big enough for Jellyfish to finish all the computation
in memory and therefore it has to write intermediate results to disk
and later merge them. This gives MSPKmerCounter a chance to out-
perform Jellyfish in terms of both memory and time. BFCounter has
the advantage that its memory usage does not increase a lot as the
coverage increases. However, compared with MSPKmerCounter, it
still requires more memory and much longer running time to finish
the task. Moreover, the memory consumption, running time and disk
space usage of MSPKmerCounter are fully controllable by varying
several parameters (Li et al., 2013).

5.4 Parallelizability
Our MSP-based k-mer counting method can easily be parallelized
to support multi-threads or be distributed to multiple machines to
enable parallel processing. There are three distinct phases in the
Minimum Substring Partitioning process. First, it reads the short
read sequences. Second, it calculates the minimum substring of each
k-mer and merges possible adjacent k-mers into “super k-mers”.
Last, it writes the “super k-mers” back to disk files. Phase 1 and
phase 3 are I/O operations, so the speedup can be obtained by using
multi-threads to process phase 2. After partitioning, different parti-
tions are completely disjoint. Therefore it is helpful to use different
threads to process different partitions simultaneously.

We implemented a preliminary multi-thread version of our MSP-
KmerCounter, denoted as MSPKmerCounter(MT). Since BFCoun-
ter is not able to support multiple threads, here we only con-
duct experiments to compare MSPKmerCounter(MT) with Jellyfish,
which is highly optimized to support efficient multi-thread proces-
sing. Figure 3 shows the running time comparison of MSPKme-
rCounter(MT) and Jellyfish with the increasing number of threads.
Here k-mers are counted on the Lake Malawi cichlid (fish) data set
with k = 31. Again we test Jellyfish under two different settings
(the settings are as same as those in Section 5.2). From Figure 3 we
can see that: (1) Jellyfish(Memory) has an almost linear speedup up
to 4 threads, indicating the best parallelizability. This is reasonable
since it puts everything in memory and therefore involves almost
no I/O costs. However, as mentioned before, its huge memory foot-
print will greatly limit its usage on commodity computers. (2) Both
Jellyfish(Disk) and MSPKmerCounter(MT) exhibit good paralleli-
zability for up to 2 threads and then levels off. This is because
these two disk based methods involve a lot of I/O operations. At 2

threads the CPU calculation is already fast enough and the I/O ban-
dwidth has become the main bottleneck. MSPKmerCounter(MT) is
still faster than Jellyfish(Disk).

From (1) and (2) we can conclude that Jellyfish is more suitable
for powerful computers (e.g. computers with large RAM and many
cores), while MSPKmerCounter is the better choice for commodity
computers (e.g. computers with small RAM and few cores).

2 4 81
0

100

200

300

400

500

600

Number of threads

R
un

ni
ng

 ti
m

e 
(m

in
ut

es
)

 

 

Jellyfish(Memory)
Jellyfish(Disk)
MSPGraphCounter(MT)

Fig. 3. Running time versus #threads for Jellyfish and MSPKmerCounter

6 FUTURE WORK
There are some future avenues to pursue to further improve our
work. First, we can adopt the techniques (e.g. variable length
encoding) introduced in Jellyfish (Marcais et al., 2011) to make
space-efficient encoding of keys and reduce the memory usage of
each hash entry to further reduce the memory consumption. Second,
we can think about extending the use of MSP from counting k-
mers to the whole sequence assembly process. Since the k-mers in
different MSP partitions are completely disjoint and the majority
of adjacent k-mers in original short reads are retained in the same
partition, it is possible to perform local assembly (including some
error correction steps like tip removal and bubble merging) for each
partition and later “glue” these local assembly results to obtain the
global assembly results. By doing so, the whole assembly process
can be done with a very small amount of memory. And the assem-
bly can speed up a lot with the gains of parallel assembly of multiple
partitions.
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7 CONCLUSION
In this paper, we aimed at the computational bottlenecks in k-mer
counting, which is an important step in many genome sequence
assembly tasks. We developed a disk-based approach based on a
novel technique, Minimum Substring Partitioning (MSP), to solve
the memory overwhelming problem. MSP breaks the short reads
into multiple disjoint partitions so that each partition only requires a
very small amount of memory to process. By leveraging the overlaps
among the k-mers derived from the same read, MSP is able to achi-
eve astonishing compression ratio so that the I/O cost can be greatly
reduced, making the method be very efficient in terms of time and
space. Our MSP-based k-mer counting method were evaluated on
real DNA short read sequences. Experimental results show that it
can not only successfully finish the counting task on very large data
sets using a reasonable amount of memory, but also achieve better
overall performance than the existing k-mer counting methods.
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